Buffo
Jacob
Buffo
Jacob
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleEntrainment and dynamics of ocean-derived impurities within Europa's ice shell(American Geophysical Union, 2020-09-20) Buffo, Jacob ; Schmidt, Britney E. ; Huber, Christian ; Walker, Catherine C.Compositional heterogeneities within Europa's ice shell likely impact the dynamics and habitability of the ice and subsurface ocean, but the total inventory and distribution of impurities within the shell are unknown. In sea ice on Earth, the thermochemical environment at the ice‐ocean interface governs impurity entrainment into the ice. Here, we simulate Europa's ice‐ocean interface and bound the impurity load (1.053–14.72 g/kg [parts per thousand weight percent, or ppt] bulk ice shell salinity) and bulk salinity profile of the ice shell. We derive constitutive equations that predict ice composition as a function of the ice shell thermal gradient and ocean composition. We show that evolving solidification rates of the ocean and hydrologic features within the shell produce compositional variations (ice bulk salinities of 5–50% of the ocean salinity) that can affect the material properties of the ice. As the shell thickens, less salt is entrained at the ice‐ocean interface, which implies Europa's ice shell is compositionally homogeneous below ~1 km. Conversely, the solidification of water filled fractures or lenses introduces substantial compositional variations within the ice shell, creating gradients in mechanical and thermal properties within the ice shell that could help initiate and sustain geological activity. Our results suggest that ocean materials entrained within Europa's ice shell affect the formation of geologic terrain and that these structures could be confirmed by planned spacecraft observations.
-
ArticleGeometry of freezing impacts ice composition: implications for icy satellites(American Geophysical Union, 2023-03-14) Buffo, Jacob J. ; Meyer, Colin R. ; Chivers, Chase J. ; Walker, Catherine C. ; Huber, Christian ; Schmidt, Britney E.Non‐ice impurities within the ice shells of ocean worlds (e.g., Europa, Enceladus, Titan, Ganymede) are believed to play a fundamental role in their geophysics and habitability and may become a surface expression of subsurface ocean properties. Heterogeneous entrainment and distribution of impurities within planetary ice shells have been proposed as mechanisms that can drive ice shell overturns, generate diverse geological features, and facilitate ocean‐surface material transport critical for maintaining a habitable subsurface ocean. However, current models of ice shell composition suggest that impurity rejection at the ice‐ocean interface of thick contemporary ice shells will be exceptionally efficient, resulting in relatively pure, homogeneous ice. As such, additional mechanisms capable of facilitating enhanced and heterogeneous impurity entrainment are needed to reconcile the observed physicochemical diversity of planetary ice shells. Here we investigate the potential for hydrologic features within planetary ice shells (sills and basal fractures), and the unique freezing geometries they promote, to provide such a mechanism. By simulating the two‐dimensional thermal and physicochemical evolution of these hydrological features as they solidify, we demonstrate that bottom‐up solidification at sill floors and horizontal solidification at fracture walls generate distinct ice compositions and provide mechanisms for both enhanced and heterogeneous impurity entrainment. We compare our results with magmatic and metallurgic analogs that exhibit similar micro‐ and macroscale chemical zonation patterns during solidification. Our results suggest variations in ice‐ocean/brine interface geometry could play a fundamental role in introducing compositional heterogeneities into planetary ice shells and cryoconcentrating impurities in (re)frozen hydrologic features.
-
ArticleIce-Ocean interactions on ocean worlds influence ice shell topography(American Geophysical Union, 2024-02-13) Lawrence, Justin D. ; Schmidt, Britney Elyce ; Buffo, Jacob J. ; Washam, Peter M. ; Chivers, Chase J. ; Miller, SaraThe freezing point of water is negatively dependent on pressure; therefore in any ocean without external forcing it is warmest at the surface and grows colder with depth. Below floating ice on Earth (e.g., ice shelves or sea ice), this pressure dependence combines with gradients in the ice draft to drive an ice redistribution process termed the “ice pump”: submerged ice melts, upwells, and then refreezes at shallower depths. Ice pumping is an exchange process between the ocean and overhead ice that results in unique ice compositions and textures and influences the distribution of sub-ice habitats on Earth. Here, we scale recent observations from Earth's ice shelves to planetary conditions and find that ice pumping is expected for a wide range of possible sub-ice shell pressures and salinity at other ocean worlds such as Europa and Enceladus. We show how ice pumping would affect hypothetical basal ice shell topography and ice thickness under varying ocean conditions and demonstrate how remote sensing of the ice shell draft can be used to estimate temperature gradients in the upper ocean ahead of in situ exploration. For example, the approximately 22 km gradient observed in Enceladus' ice shell draft between the south pole and the equator suggests a temperature differential of 0.18 K at the base of the ice shell. These concepts can extend the interpretation of observations from upcoming ocean world missions, and link ice shell topography to ice-ocean material exchange processes that may prove important to overall ocean world habitability.