McKenna Sean P.

No Thumbnail Available
Last Name
McKenna
First Name
Sean P.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Air-sea gas transfer : its dependence on wind stress, small-scale roughness, and surface films
    (American Geophysical Union, 2004-08-21) Frew, Nelson M. ; Bock, Erik J. ; Schimpf, Uwe ; Hara, Tetsu ; Haußecker, Horst ; Edson, James B. ; McGillis, Wade R. ; Nelson, Robert K. ; McKenna, Sean P. ; Uz, B. Mete ; Jahne, B.
    The influence of wind stress, small-scale waves, and surface films on air-sea gas exchange at low to moderate wind speeds (<10 m s−1) is examined. Coincident observations of wind stress, heat transfer velocity, surface wave slope, and surface film enrichments were made in coastal and offshore waters south of Cape Cod, New England, in July 1997 as part of the NSF-CoOP Coastal Air-Sea Chemical Fluxes study. Gas transfer velocities have been extrapolated from aqueous heat transfer velocities derived from infrared imagery and direct covariance and bulk heat flux estimates. Gas transfer velocity is found to follow a quadratic relationship with wind speed, which accounts for ~75–77% of the variance but which overpredicts transfer velocity in the presence of surface films. The dependence on wind stress as represented by the friction velocity is also nonlinear, reflecting a wave field-dependent transition between limiting transport regimes. In contrast, the dependence on mean square slope computed for the wave number range of 40–800 rad m−1 is found to be linear and in agreement with results from previous laboratory wind wave studies. The slope spectrum of the small-scale waves and the gas transfer velocity are attenuated in the presence of surface films. Observations over large-scale gradients of biological productivity and dissolved organic matter show that the reduction in slope and transfer velocity are more clearly correlated with surface film enrichments than with bulk organic matter concentrations. The mean square slope parameterization explains ~89–95% of the observed variance in the data and does not overpredict transfer velocities where films are present. While the specific relationships between gas transfer velocity and wind speed or mean square slope vary slightly with the choice of Schmidt number exponent used to scale the heat transfer velocities to gas transfer velocities, the correlation of heat or gas transfer velocity with mean square slope is consistently better than with wind speed.
  • Article
    Air-sea CO2 exchange in the equatorial Pacific
    (American Geophysical Union, 2004-08-28) McGillis, Wade R. ; Edson, James B. ; Zappa, Christopher J. ; Ware, Jonathan D. ; McKenna, Sean P. ; Terray, Eugene A. ; Hare, Jeffrey E. ; Fairall, Christopher W. ; Drennan, William M. ; Donelan, Mark A. ; DeGrandpre, Michael D. ; Wanninkhof, Rik ; Feely, Richard A.
    GasEx-2001, a 15-day air-sea carbon dioxide (CO2) exchange study conducted in the equatorial Pacific, used a combination of ships, buoys, and drifters equipped with ocean and atmospheric sensors to assess variability and surface mechanisms controlling air-sea CO2 fluxes. Direct covariance and profile method air-sea CO2 fluxes were measured together with the surface ocean and marine boundary layer processes. The study took place in February 2001 near 125°W, 3°S in a region of high CO2. The diurnal variation in the air-sea CO2 difference was 2.5%, driven predominantly by temperature effects on surface solubility. The wind speed was 6.0 ± 1.3 m s−1, and the atmospheric boundary layer was unstable with conditions over the range −1 < z/L < 0. Diurnal heat fluxes generated daytime surface ocean stratification and subsequent large nighttime buoyancy fluxes. The average CO2 flux from the ocean to the atmosphere was determined to be 3.9 mol m−2 yr−1, with nighttime CO2 fluxes increasing by 40% over daytime values because of a strong nighttime increase in (vertical) convective velocities. The 15 days of air-sea flux measurements taken during GasEx-2001 demonstrate some of the systematic environmental trends of the eastern equatorial Pacific Ocean. The fact that other physical processes, in addition to wind, were observed to control the rate of CO2 transfer from the ocean to the atmosphere indicates that these processes need to be taken into account in local and global biogeochemical models. These local processes can vary on regional and global scales. The GasEx-2001 results show a weak wind dependence but a strong variability in processes governed by the diurnal heating cycle. This implies that any changes in the incident radiation, including atmospheric cloud dynamics, phytoplankton biomass, and surface ocean stratification may have significant feedbacks on the amount and variability of air-sea gas exchange. This is in sharp contrast with previous field studies of air-sea gas exchange, which showed that wind was the dominating forcing function. The results suggest that gas transfer parameterizations that rely solely on wind will be insufficient for regions with low to intermediate winds and strong insolation.
  • Thesis
    Free-surface turbulence and air-water gas exchange
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2000-09) McKenna, Sean P.
    This thesis investigates the physical mechanisms of air-water gas transfer through direct measurements of turbulence at the air--water interface. To enable this study, a new approach to the particle image velocimetry (PIV) technique is developed in order to quantify free-surface flows. Two aspects of this work are innovative. First, the use of a three-dimensional laser light cone and optical filtering of the camera allow for the motion of fluorescent flow tracers at the water surface to be isolated and measured. Validation experiments indicate that this measurement reflects the fluid motion within the upper few hundred microns. A key benefit to this approach is the ability to deal with deforming surfaces, provided the amplitudes are not prohibitively large. This feature was used in this thesis to explore the surface flow induced by mechanically generated waves. Second, a new hybrid PIV image processing algorithm was developed that provides high accuracy velocity estimation with improved computational efficiency. This algorithm combines the concepts of dynamic Fourier-domain cross-correlation with a localized direct multiplicative correlation. In order to explore relationships between free-surface hydrodynamics and air-water gas transfer, an oscillating grid-stirred tank was constructed. By its design, this tank can be managed for chemical cleanliness, offers an unobstructed free surface, and is suited for turbulent mixing and air--water gas-exchange studies. A series of acoustic Doppler velocimeter, PIV, and infrared imaging experiments are presented that characterize the flow for the grid forcing conditions studied. Results indicate that the flows are stationary and reasonably repeatable. In addition, the flows exhibit near-isotropic turbulence and are quasi-homogeneous in horizontal planes. Secondary circulations are revealed and investigated. Finally, PIV measurements of free-surface turbulence are performed with concurrent measurements of gas transfer in the grid tank for a range of turbulent mixing and surface conditions. Surface turbulence, vorticity, and divergence are all affected by the presence of a surface film, with significant effects realized for relatively small surface pressures. Results show that while a relationship between surface turbulence and the gas-transfer velocity is an obvious improvement over that found using an estimate of the bulk flow turbulence, this relationship is dependent on the flow regime. This is revealed through additional surface wave studies. However, the data from both the wave experiments and the grid turbulence experiments can be reconciled by a single relationship between the gas-transfer velocity and the 1/2-power of the surface divergence, which agrees with previous conceptual models. These results (1) further our understanding of interfacial transport processes, (2) demonstrate the important role of surface divergence in air-water gas exchange, and (3) relate, in a physically meaningful way, the interactions between surface renewal, surfactants, and gas transfer.