Fricker
Helen A.
Fricker
Helen A.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleA high resolution, three-dimensional view of the D-28 calving event from Amery Ice Shelf with ICESat-2 and satellite imagery(American Geophysical Union, 2021-01-12) Walker, Catherine C. ; Becker, Maya K. ; Fricker, Helen A.Tabular calving events occur from Antarctica's large ice shelves only every few decades, and are preceded by rift propagation. We used high-resolution imagery and ICESat-2 data to determine the propagation rates for the three active rifts on Amery Ice Shelf (AIS; T1, T2, and E3) and observe the calving of D-28 on September 25, 2019 along T1. AIS front advance accelerated downstream of T1 in the years before calving, possibly increasing stress at the rift tip. T1 experienced significant acceleration for 12 days before calving, coinciding with a jump in propagation of E3. ICESat-2's high resolution and repeat acquisitions every 91 days allowed for analysis of the ice front before and after calving, and rift detection where it was not visible in imagery as a ∼1 m surface depression, suggesting that it propagates as a basal fracture. Our results show that ICESat-2 can provide process-scale information about iceberg calving.
-
ArticleScientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations(Cambridge University Press, 2021-01-08) Priscu, John C. ; Kalin, Jonas ; Winans, John ; Campbell, Timothy ; Siegfried, Matthew R. ; Skidmore, Mark ; Dore, John E. ; Leventer, Amy ; Harwood, David M. ; Duling, Dennis ; Zook, Robert ; Burnett, Justin ; Gibson, Dar ; Krula, Edward ; Mironov, Anatoly ; McManis, James ; Roberts, Graham ; Rosenheim, Brad E. ; Christner, Brent C. ; Kasic, Kathy ; Fricker, Helen A. ; Lyons, W. Berry ; Barker, Joel ; Bowling, Mark ; Collins, Billy ; Davis, Christina ; Gagnon, Alan R. ; Gardner, Christopher B. ; Gustafson, Chloe ; Kim, Ok-Sun ; Li, Wei ; Michaud, Alex ; Patterson, Molly O. ; Tranter, Martyn ; Venturelli, Ryan ; Vick-Majors, Trista ; Elsworth, CooperThe Subglacial Antarctic Lakes Scientific Access (SALSA) Project accessed Mercer Subglacial Lake using environmentally clean hot-water drilling to examine interactions among ice, water, sediment, rock, microbes and carbon reservoirs within the lake water column and underlying sediments. A ~0.4 m diameter borehole was melted through 1087 m of ice and maintained over ~10 days, allowing observation of ice properties and collection of water and sediment with various tools. Over this period, SALSA collected: 60 L of lake water and 10 L of deep borehole water; microbes >0.2 μm in diameter from in situ filtration of ~100 L of lake water; 10 multicores 0.32–0.49 m long; 1.0 and 1.76 m long gravity cores; three conductivity–temperature–depth profiles of borehole and lake water; five discrete depth current meter measurements in the lake and images of ice, the lake water–ice interface and lake sediments. Temperature and conductivity data showed the hydrodynamic character of water mixing between the borehole and lake after entry. Models simulating melting of the ~6 m thick basal accreted ice layer imply that debris fall-out through the ~15 m water column to the lake sediments from borehole melting had little effect on the stratigraphy of surficial sediment cores.