Ackerman Katherine V.

No Thumbnail Available
Last Name
Ackerman
First Name
Katherine V.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Historical influence of soil and water management on sediment and carbon budgets in the United States
    (Elsevier B.V., 2011-03-26) Sundquist, Eric T. ; Ackerman, Katherine V. ; Stallard, Robert F. ; Bliss, Norman B.
    The documented history of US soil and water management provides a unique opportunity to examine soil and sediment C storage under conditions of changing management practices. Historical acceleration of erosion due to cultivation has been moderated by improved soil management. Increased construction of dams and locks has expanded areas of aquatic sedimentation in reservoirs and ponds. Enhanced historical sediment deposition rates have been documented in lakes and estuaries. All of these changes have an impact on terrestrial C storage and turnover. The present-day C budget associated with erosion and burial cannot be determined without quantifying the time-dependent changes due to past and present soil and water management.
  • Article
    Comparison of two U.S. power-plant carbon dioxide emissions data sets
    (Americal Chemical Society, 2008-06-25) Ackerman, Katherine V. ; Sundquist, Eric T.
    Estimates of fossil-fuel CO2 emissions are needed to address a variety of climate-change mitigation concerns over a broad range of spatial and temporal scales. We compared two data sets that report power-plant CO2 emissions in the conterminous U.S. for 2004, the most recent year reported in both data sets. The data sets were obtained from the Department of Energy’s Energy Information Administration (EIA) and the Environmental Protection Agency’s eGRID database. Conterminous U.S. total emissions computed from the data sets differed by 3.5% for total plant emissions (electricity plus useful thermal output) and 2.3% for electricity generation only. These differences are well within previous estimates of uncertainty in annual U.S. fossil-fuel emissions. However, the corresponding average absolute differences between estimates of emissions from individual power plants were much larger, 16.9% and 25.3%, respectively. By statistical analysis, we identified several potential sources of differences between EIA and eGRID estimates for individual plants. Estimates that are based partly or entirely on monitoring of stack gases (reported by eGRID only) differed significantly from estimates based on fuel consumption (as reported by EIA). Differences in accounting methods appear to explain differences in estimates for emissions from electricity generation from combined heat and power plants, and for total and electricity generation emissions from plants that burn nonconventional fuels (e.g., biomass). Our analysis suggests the need for care in utilizing emissions data from individual power plants, and the need for transparency in documenting the accounting and monitoring methods used to estimate emissions.
  • Article
    Development and application of landsat-based wetland vegetation cover and unvegetated-vegetated marsh ratio (UVVR) for the conterminous United States
    (Springer, 2022-05-02) Ganju, Neil K. ; Defne, Zafer ; Ackerman, Katherine V.
    Effective management and restoration of salt marshes and other vegetated intertidal habitats require objective and spatially integrated metrics of geomorphic status and vulnerability. The unvegetated-vegetated marsh ratio (UVVR), a recently developed metric, can be used to establish present-day vegetative cover, identify stability thresholds, and quantify vulnerability to open-water conversion over a range of spatial scales. We developed a Landsat-based approach to quantify the within-pixel vegetated fraction and UVVR for coastal wetlands of the conterminous United States, at 30-m resolution for 2014–2018. Here we present the methodology used to generate the UVVR from spectral indices, along with calibration, validation, and spatial autocorrelation assessments. We then demonstrate multiple applications of the data across varying spatial scales: first, we aggregate the UVVR across individual states and estuaries to quantify total vegetated wetland area for the nation. On the state level, Louisiana and Florida account for over 50% of the nation’s total, while on the estuarine level, the Chesapeake Bay Estuary and selected Louisiana coastal areas each account for over 6% of the nation’s total vegetated wetland area. Second, we present cases where this dataset can be used to track wetland change (e.g., expansion due to restoration and loss due to stressors). Lastly, we propose a classification methodology that delineates areas vulnerable to open-water expansion based on the 5-year mean and standard deviation of the UVVR. Calculating the UVVR for the period-of-record back to 1985, as well as regular updating, will fill a critical gap for tracking national status of salt marshes and other vegetated habitats through time and space.
  • Article
    Using geospatial analysis to guide marsh restoration in Chesapeake Bay and beyond
    (Springer, 2023-09-13) Ganju, Neil K. ; Ackerman, Katherine V. ; Defne, Zafer
    Coastal managers are facing imminent decisions regarding the fate of coastal wetlands, given ongoing threats to their persistence. There is a need for objective methods to identify which wetland parcels are candidates for restoration, monitoring, protection, or acquisition due to limited resources and restoration techniques. Here, we describe a new spatially comprehensive data set for Chesapeake Bay salt marshes, which includes the unvegetated-vegetated marsh ratio, elevation metrics, and sediment-based lifespan. Spatial aggregation across regions of the Bay shows a trend of increasing deterioration with proximity to the seaward boundary, coherent with conceptual models of coastal landscape response to sea-level rise. On a smaller scale, the signature of deterioration is highly variable within subsections of the Bay: fringing, peninsular, and tidal river marsh complexes each exhibit different spatial patterns with regards to proximity to the seaward edge. We then demonstrate objective methods to use these data for mapping potential management options on to the landscape, and then provide methods to estimate lifespan and potential changes in lifespan in response to restoration actions as well as future sea level rise. We account for actions that aim to increase sediment inventories, revegetate barren areas, restore hydrology, and facilitate salt marsh migration into upland areas. The distillation of robust geospatial data into simple decision-making metrics, as well as the use of those metrics to map decisions on the landscape, represents an important step towards science-based coastal management.