Kjeldsen Kristian K.

No Thumbnail Available
Last Name
Kjeldsen
First Name
Kristian K.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    BedMachine v3 : complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation
    (John Wiley & Sons, 2017-11-01) Morlighem, Mathieu ; Williams, Chris N. ; Rignot, Eric ; An, Lu ; Arndt, Jan Erik ; Bamber, Jonathan L. ; Catania, Ginny ; Chauché, Nolwenn ; Dowdeswell, Julian ; Dorschel, Boris ; Fenty, Ian ; Hogan, Kelly ; Howat, Ian M. ; Hubbard, Alun ; Jakobsson, Martin ; Jordan, Tom M. ; Kjeldsen, Kristian K. ; Millan, Romain ; Mayer, Larry A. ; Mouginot, Jeremie ; Noël, Brice P. Y. ; O’Cofaigh, Colm ; Palmer, Steven ; Rysgaard, Soren ; Seroussi, Helene ; Siegert, Martin J. ; Slabon, Patricia ; Straneo, Fiamma ; Van den Broeke, Michiel ; Weinrebe, W. ; Wood, Michael ; Zinglersen, Karl Brix
    Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine-terminating glaciers. Here we present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous data sets, particularly in the marine-terminating sectors of northwest and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet is 7.42 ± 0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine-based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing.
  • Article
    Outlet glacier dynamics and bathymetry at Upernavik Isstrøm and Upernavik Isfjord, North-West Greenland
    (Geological Survey of Denmark and Greenland, 2014-07) Andresen, Camilla S. ; Kjeldsen, Kristian K. ; Harden, Benjamin E. ; Norgaard-Pedersen, Niels ; Kjaer, Kurt H.
    During the past decades, the Greenland ice sheet has experienced a marked increase in mass loss resulting in an increased contribution to global sea-level rise. The three largest outlet glaciers in Greenland have increased their discharge, accelerated, thinned and retreated between 1996 and 2005. After 2005 most of them have slowed down again although not to previous levels. Geodetic observations suggest that rapid increase in mass loss from the north-western part of the ice sheet occurred during 2005–2010 (Kjeldsen et al. 2013). Warming of the subsurface water masses off Greenland may have triggered the acceleration of outlet glaciers from the ice sheet (Straneo & Heimbach 2013). The North Atlantic subpolar gyre, which transports water to South-East and West Greenland via the warm Irminger Current, warmed in the mid-1990s. Increased inflow of warm subpolar waters likely led to increased submarine melting of tidewater glaciers. Climate, glacier configuration and fjord bathymetry play fundamental roles for outlet glacier dynamics and thus knowledge of these parameters is warranted. In particular, the bathymetry of a fjord gives important information about the exchange between fjord waters close to marine-terminating glaciers and the shelf and ocean. However, only sparse bathymetric data are available for the majority of fjords in Greenland. The International bathymetry chart for the Arctic Ocean (IBCAO) does not provide adequate data for the fjords and gives the impression that water depths in fjords are typically <200 m. Here we present the first detailed bathymetric data from Upernavik Isfjord in North-West Greenland, which were obtained during a cruise led by the Geological Survey of Denmark and Greenland in August 2013. The purpose of the cruise was to retrieve sediment cores, collect hydrographic data and map the bathymetry of the fjord. In this paper, we also estimate retreat rates of the Upernavik Isstrøm since 1849 and evaluate them in the context of climate variability, glacier setting and fjord bathymetry.