Stoecker
Diane K.
Stoecker
Diane K.
No Thumbnail Available
Search Results
Now showing
1 - 8 of 8
-
ArticleAcquired phototrophy in aquatic protists(Inter-Research, 2009-11-24) Stoecker, Diane K. ; Johnson, Matthew D. ; de Vargas, Colomban ; Not, FabriceAcquisition of phototrophy is widely distributed in the eukaryotic tree of life and can involve algal endosymbiosis or plastid retention from green or red origins. Species with acquired phototrophy are important components of diversity in aquatic ecosystems, but there are major differences in host and algal taxa involved and in niches of protists with acquired phototrophy in marine and freshwater ecosystems. Organisms that carry out acquired phototrophy are usually mixotrophs, but the degree to which they depend on phototrophy is variable. Evidence suggests that ‘excess carbon’ provided by acquired phototrophy has been important in supporting major evolutionary innovations that are crucial to the current ecological roles of these protists in aquatic ecosystems. Acquired phototrophy occurs primarily among radiolaria, foraminifera, ciliates and dinoflagellates, but is most ecologically important among the first three. Acquired phototrophy in foraminifera and radiolaria is crucial to their contributions to carbonate, silicate, strontium, and carbon flux in subtropical and tropical oceans. Planktonic ciliates with algal kleptoplastids are important in marine and fresh waters, whereas ciliates with green algal endosymbionts are mostly important in freshwaters. The phototrophic ciliate Myrionecta rubra can be a major primary producer in coastal ecosystems. Our knowledge of how acquired phototrophy influences trophic dynamics and biogeochemical cycles is rudimentary; we need to go beyond traditional concepts of ‘plant’ and ‘animal’ functions to progress in our understanding of aquatic microbial ecology. This is a rich area for exploration using a combination of classical and molecular techniques, laboratory and field research, and physiological and ecosystem modeling.
-
PreprintSeasonal dynamics of Mesodinium rubrum in Chesapeake Bay( 2013-03) Johnson, Matthew D. ; Stoecker, Diane K. ; Marshall, Harold G.The photosynthetic ciliate Mesodinium rubrum is a common member of coastal phytoplankton communities that is well adapted to low-light, turbid ecosystems. It supports the growth of or competes with harmful dinoflagellate species for cryptophyte prey, as well as being a trophic link to copepods and larval fish. We have compiled data from various sources (n = 1063), on the abundance and distribution of M. rubrum in Chesapeake Bay and its tributaries. Because M. rubrum relies on obtaining organelles from cryptophyte algae to maintain rapid growth, we also enumerated cryptophyte algae in the portion of these samples that we collected (n = 386). M. rubrum occurred in oligohaline to polyhaline regions of Chesapeake Bay and throughout the year. Blooms (>100 cells ml-1) of M. rubrum primarily occurred during spring, followed by autumn. When compared across all seasons, M. rubrum abundance was positively correlated to temperature and cryptophytes, and negatively correlated with salinity. However, more focused analyses revealed that M. rubrum abundance during spring was associated with surface layer warming and decreased salinity, while early autumn assemblages were associated with surface cooling. These results imply there are distinct seasonal niches for M. rubrum blooms. Blooms of M. rubrum were more common in tributaries than in the main stem Bay and tended to be restricted to salinities under 10 PSU. Despite the rarity of “red water” events, M. rubrum is a ubiquitous mixotroph in Chesapeake Bay and at times likely exerts a strong influence on cryptophyte algal abundance and hence planktonic food web structure.
-
PreprintOcean urea fertilization for carbon credits poses high ecological risks( 2008) Glibert, Patricia M. ; Azanza, Rhodora ; Burford, Michele ; Furuya, Ken ; Abal, Eva ; Al-Azri, Adnan ; Al-Yamani, Faiza ; Andersen, Per ; Anderson, Donald M. ; Beardall, John ; Berg, Gry M. ; Brand, Larry E. ; Bronk, Deborah ; Brookes, Justin ; Burkholder, JoAnn M. ; Cembella, Allan D. ; Cochlan, William P. ; Collier, Jackie L. ; Collos, Yves ; Diaz, Robert ; Doblin, Martina ; Drennen, Thomas ; Dyhrman, Sonya T. ; Fukuyo, Yasuwo ; Furnas, Miles ; Galloway, James ; Graneli, Edna ; Ha, Dao Viet ; Hallegraeff, Gustaaf M. ; Harrison, John A. ; Harrison, Paul J. ; Heil, Cynthia A. ; Heimann, Kirsten ; Howarth, Robert W. ; Jauzein, Cecile ; Kana, Austin A. ; Kana, Todd M. ; Kim, Hakgyoon ; Kudela, Raphael M. ; Legrand, Catherine ; Mallin, Michael ; Mulholland, Margaret R. ; Murray, Shauna A. ; O’Neil, Judith ; Pitcher, Grant C. ; Qi, Yuzao ; Rabalais, Nancy ; Raine, Robin ; Seitzinger, Sybil P. ; Salomon, Paulo S. ; Solomon, Caroline ; Stoecker, Diane K. ; Usup, Gires ; Wilson, Joanne ; Yin, Kedong ; Zhou, Mingjiang ; Zhu, MingyuanThe proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed.
-
ArticleSpring plankton dynamics in the Eastern Bering Sea, 1971–2050 : mechanisms of interannual variability diagnosed with a numerical model(John Wiley & Sons, 2016-02-20) Banas, Neil S. ; Zhang, Jinlun ; Campbell, Robert G. ; Sambrotto, Raymond N. ; Lomas, Michael W. ; Sherr, Evelyn B. ; Sherr, Barry F. ; Ashjian, Carin J. ; Stoecker, Diane K. ; Lessard, Evelyn J.A new planktonic ecosystem model was constructed for the Eastern Bering Sea based on observations from the 2007–2010 BEST/BSIERP (Bering Ecosystem Study/Bering Sea Integrated Ecosystem Research Program) field program. When run with forcing from a data-assimilative ice-ocean hindcast of 1971–2012, the model performs well against observations of spring bloom time evolution (phytoplankton and microzooplankton biomass, growth and grazing rates, and ratios among new, regenerated, and export production). On the southern middle shelf (57°N, station M2), the model replicates the generally inverse relationship between ice-retreat timing and spring bloom timing known from observations, and the simpler direct relationship between the two that has been observed on the northern middle shelf (62°N, station M8). The relationship between simulated mean primary production and mean temperature in spring (15 February to 15 July) is generally positive, although this was found to be an indirect relationship which does not continue to apply across a future projection of temperature and ice cover in the 2040s. At M2, the leading direct controls on total spring primary production are found to be advective and turbulent nutrient supply, suggesting that mesoscale, wind-driven processes—advective transport and storminess—may be crucial to long-term trends in spring primary production in the southeastern Bering Sea, with temperature and ice cover playing only indirect roles. Sensitivity experiments suggest that direct dependence of planktonic growth and metabolic rates on temperature is less significant overall than the other drivers correlated with temperature described above.
-
PreprintIntra- and interspecies differences in growth and toxicity of Pseudo-nitzschia while using different nitrogen sources( 2009-01) Thessen, Anne E. ; Bowers, Holly A. ; Stoecker, Diane K.Clonal cultures of plankton are widely used in laboratory experiments and have contributed greatly to knowledge of microbial systems. However, many physiological characteristics vary drastically between strains of the same species, calling into question our ability to make ecologically relevant inferences about populations based on studying one or a few strains. This study included nineteen non-axenic strains of three species of the diatom Pseudo-nitzschia isolated primarily from the mid-Atlantic coastal region of the United States. Toxin (domoic acid) production and growth rates were measured in cultures using different nitrogen sources (NH4+, NO3- and urea) and growth irradiances. The strains exhibited broad differences in growth rate and toxin content even between strains isolated from the same water sample. The influence of bacteria on toxin production was not investigated. Both P. multiseries clones produced toxin, yet preferentially used different nitrogen sources. Only two out of nine P. calliantha and two out of five P. fraudulenta isolates were toxic and domoic acid content varied by orders of magnitude. All three species had variable intraspecies growth rates on each nitrogen source, but P. fraudulenta strains had the broadest range. Light-limited growth rate and maximum growth rate in P. fraudulenta and P. multiseries varied with species. These findings show the importance of defining intra- and interspecies variability in ecophysiology and toxicity. Ecologically relevant functional diversity in the form of ecotypes or cryptic species appears to be present in the genus Pseudo-nitzschia.
-
ArticleHigh grazing rates on cryptophyte algae in Chesapeake Bay(Frontiers Media, 2018-07-25) Johnson, Matthew D. ; Beaudoin, David J. ; Frada, Miguel J. ; Brownlee, Emily F. ; Stoecker, Diane K.Cryptophyte algae are globally distributed photosynthetic flagellates found in freshwater, estuarine, and neritic ecosystems. While cryptophytes can be highly abundant and are consumed by a wide variety of protistan predators, few studies have sought to quantify in situ grazing rates on their populations. Here we show that autumnal grazing rates on in situ communities of cryptophyte algae in Chesapeake Bay are high throughout the system, while growth rates, particularly in the lower bay, were low. Analysis of the genetic diversity of cryptophyte populations within dilution experiments suggests that microzooplankton may be selectively grazing the fastest-growing members of the population, which were generally Teleaulax spp. We also demonstrate that potential grazing rates of ciliates and dinoflagellates on fluorescently labeled (FL) Rhodomonas salina, Storeatula major, and Teleaulax amphioxeia can be high (up to 149 prey predator−1 d−1), and that a Gyrodinium sp. and Mesodinium rubrum could be selective grazers. Potential grazing was highest for heterotrophic dinoflagellates, but due to its abundance, M. rubrum also had a high overall impact. This study reveals that cryptophyte algae in Chesapeake Bay can experience extremely high grazing pressure from phagotrophic protists, and that this grazing likely shapes their community diversity.
-
ArticleThe genetic diversity of Mesodinium and associated cryptophytes(Frontiers Media, 2016-12-20) Johnson, Matthew D. ; Beaudoin, David J. ; Laza-Martinez, Aitor ; Dyhrman, Sonya T. ; Fensin, Elizabeth ; Lin, Senjie ; Merculief, Aaron ; Nagai, Satoshi ; Pompeu, Mayza ; Setala, Outi ; Stoecker, Diane K.Ciliates from the genus Mesodinium are globally distributed in marine and freshwater ecosystems and may possess either heterotrophic or mixotrophic nutritional modes. Members of the Mesodinium major/rubrum species complex photosynthesize by sequestering and maintaining organelles from cryptophyte prey, and under certain conditions form periodic or recurrent blooms (= red tides). Here, we present an analysis of the genetic diversity of Mesodinium and cryptophyte populations from 10 environmental samples (eight globally dispersed habitats including five Mesodinium blooms), using group-specific primers for Mesodinium partial 18S, ITS, and partial 28S rRNA genes as well as cryptophyte large subunit RuBisCO genes (rbcL). In addition, 22 new cryptophyte and four new M. rubrum cultures were used to extract DNA and sequence rbcL and 18S-ITS-28S genes, respectively, in order to provide a stronger phylogenetic context for our environmental sequences. Bloom samples were analyzed from coastal Brazil, Chile, two Northeastern locations in the United States, and the Pribilof Islands within the Bering Sea. Additionally, samples were also analyzed from the Baltic and Barents Seas and coastal California under non-bloom conditions. Most blooms were dominated by a single Mesodinium genotype, with coastal Brazil and Chile blooms composed of M. major and the Eastern USA blooms dominated by M. rubrum variant B. Sequences from all four blooms were dominated by Teleaulax amphioxeia-like cryptophytes. Non-bloom communities revealed more diverse assemblages of Mesodinium spp., including heterotrophic species and the mixotrophic Mesodinium chamaeleon. Similarly, cryptophyte diversity was also higher in non-bloom samples. Our results confirm that Mesodinium blooms may be caused by M. major, as well as multiple variants of M. rubrum, and further implicate T. amphioxeia as the key cryptophyte species linked to these phenomena in temperate and subtropical regions.
-
ArticleDefining planktonic protist functional groups on mechanisms for energy and nutrient acquisition : incorporation of diverse mixotrophic strategies(Elsevier, 2016-01-03) Mitra, Aditee ; Flynn, Kevin J. ; Tillmann, Urban ; Raven, John A. ; Caron, David A. ; Stoecker, Diane K. ; Not, Fabrice ; Hansen, Per J. ; Hallegraeff, Gustaaf M. ; Sanders, Robert W. ; Wilken, Susanne ; McManus, George ; Johnson, Matthew D. ; Pitta, Paraskevi ; Våge, Selina ; Berge, Terje ; Calbet, Albert ; Thingstad, Frede ; Jeong, Hae Jin ; Burkholder, JoAnn M. ; Glibert, Patricia M. ; Graneli, Edna ; Lundgren, VeronicaArranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic “phytoplankton” and phagotrophic “microzooplankton”. However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton. To reflect this understanding, we propose a new functional grouping of planktonic protists in an eco-physiological context: (i) phagoheterotrophs lacking phototrophic capacity, (ii) photoautotrophs lacking phagotrophic capacity, (iii) constitutive mixotrophs (CMs) as phagotrophs with an inherent capacity for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope for significant changes in trophic dynamics depending on the protist functional type description. Accordingly, to better reflect the role of mixotrophy, we recommend that as important tools for explanatory and predictive research, aquatic food-web and biogeochemical models need to redefine the protist groups within their frameworks.