Petillo
Stephanie M.
Petillo
Stephanie M.
No Thumbnail Available
2 results
Search Results
Now showing
1 - 2 of 2
-
ArticleConstructing a distributed AUV network for underwater plume-tracking operations(Hindawi, 2012) Petillo, Stephanie M. ; Schmidt, Henrik ; Balasuriya, ArjunaIn recent years, there has been significant concern about the impacts of offshore oil spill plumes and harmful algal blooms on the coastal ocean environment and biology, as well as on the human populations adjacent to these coastal regions. Thus, it has become increasingly important to determine the 3D extent of these ocean features (“plumes”) and how they evolve over time. The ocean environment is largely inaccessible to sensing directly by humans, motivating the need for robots to intelligently sense the ocean for us. In this paper, we propose the use of an autonomous underwater vehicle (AUV) network to track and predict plume shape and motion, discussing solutions to the challenges of spatiotemporal data aliasing (coverage versus resolution), underwater communication, AUV autonomy, data fusion, and coordination of multiple AUVs. A plume simulation is also developed here as the first step toward implementing behaviors for autonomous, adaptive plume tracking with AUVs, modeling a plume as a sum of Fourier orders and examining the resulting errors. This is then extended to include plume forecasting based on time variations, and future improvements and implementation are discussed.
-
ThesisAutonomous & adaptive oceanographic feature tracking on board autonomous underwater vehicles(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2015-02) Petillo, Stephanie M.The capabilities of autonomous underwater vehicles (AUVs) and their ability to perform tasks both autonomously and adaptively are rapidly improving, and the desire to quickly and efficiently sample the ocean environment as Earth's climate changes and natural disasters occur has increased significantly in the last decade. As such, this thesis proposes to develop a method for single and multiple AUVs to collaborate autonomously underwater while autonomously adapting their motion to changes in their local environments, allowing them to sample and track various features of interest with greater efficiency and synopticity than previously possible with preplanned AUV or ship-based surveys. This concept is demonstrated to work in field testing on multiple occasions: with a single AUV autonomously and adaptively tracking the depth range of a thermocline or acousticline, and with two AUVs coordinating their motion to collect a data set in which internal waves could be detected. This research is then taken to the next level by exploring the problem of adaptively and autonomously tracking spatiotemporally dynamic underwater fronts and plumes using individual and autonomously collaborating AUVs.