Waelbroeck Claire

No Thumbnail Available
Last Name
Waelbroeck
First Name
Claire
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Calibration of the carbon isotope composition (δ13C) of benthic foraminifera
    (John Wiley & Sons, 2017-06-03) Schmittner, Andreas ; Bostock, Helen ; Cartapanis, olivier ; Curry, William B. ; Filipsson, Helena L. ; Galbraith, Eric D. ; Gottschalk, Julia ; Herguera, Juan Carlos ; Hoogakker, Babette ; Jaccard, Samuel L. ; Lisiecki, Lorraine E. ; Lund, David C. ; Martínez Méndez, Gema ; Lynch-Stieglitz, Jean ; Mackensen, Andreas ; Michel, Elisabeth ; Mix, Alan C. ; Oppo, Delia W. ; Peterson, Carlye D. ; Repschläger, Janne ; Sikes, Elisabeth L. ; Spero, Howard J. ; Waelbroeck, Claire
    The carbon isotope composition (δ13C) of seawater provides valuable insight on ocean circulation, air-sea exchange, the biological pump, and the global carbon cycle and is reflected by the δ13C of foraminifera tests. Here more than 1700 δ13C observations of the benthic foraminifera genus Cibicides from late Holocene sediments (δ13CCibnat) are compiled and compared with newly updated estimates of the natural (preindustrial) water column δ13C of dissolved inorganic carbon (δ13CDICnat) as part of the international Ocean Circulation and Carbon Cycling (OC3) project. Using selection criteria based on the spatial distance between samples, we find high correlation between δ13CCibnat and δ13CDICnat, confirming earlier work. Regression analyses indicate significant carbonate ion (−2.6 ± 0.4) × 10−3‰/(μmol kg−1) [CO32−] and pressure (−4.9 ± 1.7) × 10−5‰ m−1 (depth) effects, which we use to propose a new global calibration for predicting δ13CDICnat from δ13CCibnat. This calibration is shown to remove some systematic regional biases and decrease errors compared with the one-to-one relationship (δ13CDICnat = δ13CCibnat). However, these effects and the error reductions are relatively small, which suggests that most conclusions from previous studies using a one-to-one relationship remain robust. The remaining standard error of the regression is generally σ ≅ 0.25‰, with larger values found in the southeast Atlantic and Antarctic (σ ≅ 0.4‰) and for species other than Cibicides wuellerstorfi. Discussion of species effects and possible sources of the remaining errors may aid future attempts to improve the use of the benthic δ13C record.
  • Article
    Marine isotope stage 3 sea level fluctuations : data synthesis and new outlook
    (American Geophysical Union, 2008-11-05) Siddall, M. ; Rohling, Eelco J. ; Thompson, William G. ; Waelbroeck, Claire
    To develop a better understanding of the abrupt Dansgaard-Oeschger mode of climate change, it is essential that we establish whether the ice sheets are actively involved, as trigger or amplifier, or whether they merely respond in a passive manner. This requires careful assessment of the fundamental issues of magnitude and phasing of global ice volume fluctuations within marine isotope stage 3 (MIS 3), which to date remain enigmatic. We review recent advances in observational studies pertaining to these key issues and discuss the implications for modeling studies. Our aim is to construct a robust stratigraphic framework for the MIS 3 period regarding sea level variability, using the most up-to-date arguments available by combining insights from both modeling and observational approaches.
  • Article
    Consistently dated Atlantic sediment cores over the last 40 thousand years
    (Nature Research, 2019-09-02) Waelbroeck, Claire ; Lougheed, Bryan C. ; Vazquez Riveiros, Natalia ; Missiaen, Lise ; Pedro, Joel ; Dokken, Trond ; Hajdas, Irka ; Wacker, Lukas ; Abbott, Peter ; Dumoulin, Jean-Pascal ; Thil, Francois ; Eynaud, Frederique ; Rossignol, Linda ; Fersi, Wiem ; Albuquerque, Ana Luiza ; Arz, Helge W. ; Austin, William E. N. ; Came, Rosemarie E. ; Carlson, Anders E. ; Collins, James A. ; Dennielou, Bernard ; Desprat, Stéphanie ; Dickson, Alex ; Elliot, Mary ; Farmer, Christa ; Giraudeau, Jacques ; Gottschalk, Julia ; Henderiks, Jorijntje ; Hughen, Konrad A. ; Jung, Simon ; Knutz, Paul ; Lebreiro, Susana ; Lund, David C. ; Lynch-Stieglitz, Jean ; Malaizé, Bruno ; Marchitto, Thomas M. ; Martínez-Méndez, Gema ; Mollenhauer, Gesine ; Naughton, Filipa ; Nave, Silvia ; Nürnberg, Dirk ; Oppo, Delia W. ; Peck, Vicky L. ; Peeters, Frank J. C. ; Penaud, Aurélie ; Portilho-Ramos, Rodrigo da Costa ; Repschläger, Janne ; Roberts, Jenny ; Ruhlemann, Carsten ; Salgueiro, Emilia ; Sanchez Goni, Maria Fernanda ; Schönfeld, Joachim ; Scussolini, Paolo ; Skinner, Luke C. ; Skonieczny, Charlotte ; Thornalley, David J. R. ; Toucanne, Samuel ; Van Rooij, David ; Vidal, Laurence ; Voelker, Antje H. L. ; Wary, Mélanie ; Weldeab, Syee ; Ziegler, Martin
    Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.
  • Article
    On the movements of the North Atlantic Subpolar Front in the preinstrumental past
    (American Meteorological Society, 2016-02-19) Marchal, Olivier ; Waelbroeck, Claire ; Colin de Verdiere, Alain
    Three sediment records of sea surface temperature (SST) are analyzed that originate from distant locations in the North Atlantic, have centennial-to-multicentennial resolution, are based on the same reconstruction method and chronological assumptions, and span the past 15 000 yr. Using recursive least squares techniques, an estimate of the time-dependent North Atlantic SST field over the last 15 kyr is sought that is consistent with both the SST records and a surface ocean circulation model, given estimates of their respective error (co)variances. Under the authors’ assumptions about data and model errors, it is found that the 10°C mixed layer isotherm, which approximately traces the modern Subpolar Front, would have moved by ~15° of latitude southward (northward) in the eastern North Atlantic at the onset (termination) of the Younger Dryas cold interval (YD), a result significant at the level of two standard deviations in the isotherm position. In contrast, meridional movements of the isotherm in the Newfoundland basin are estimated to be small and not significant. Thus, the isotherm would have pivoted twice around a region southeast of the Grand Banks, with a southwest–northeast orientation during the warm intervals of the Bølling–Allerød and the Holocene and a more zonal orientation and southerly position during the cold interval of the YD. This study provides an assessment of the significance of similar previous inferences and illustrates the potential of recursive least squares in paleoceanography.