Mekik Figen

No Thumbnail Available
Last Name
Mekik
First Name
Figen
ORCID
0000-0002-0248-9335

Search Results

Now showing 1 - 3 of 3
  • Article
    Export fluxes of calcite in the eastern equatorial Pacific from the Last Glacial Maximum to present
    (American Geophysical Union, 2004-06-12) Loubere, Paul ; Mekik, Figen ; Francois, Roger ; Pichat, Sylvain
    The eastern equatorial Pacific (EEP) is an important center of biological productivity, generating significant organic carbon and calcite fluxes to the deep ocean. We reconstructed paleocalcite flux for the past 30,000 years in four cores collected beneath the equatorial upwelling and the South Equatorial Current (SEC) by measuring ex230Th-normalized calcite accumulation rates corrected for dissolution with a newly developed proxy for “fraction of calcite preserved.” This method produced very similar results at the four sites and revealed that the export flux of calcite was 30–50% lower during the LGM compared to the Holocene. The internal consistency of these results supports our interpretation, which is also in agreement with emerging data indicating lower glacial productivity in the EEP, possibly as a result of lower nutrient supply from the southern ocean via the Equatorial Undercurrent. However, these findings contradict previous interpretations based on mass accumulation rates (MAR) of biogenic material in the sediment of the EEP, which have been taken as reflecting higher glacial productivity due to stronger wind-driven upwelling.
  • Article
    Global ocean sediment composition and burial flux in the deep sea
    (American Geophysical Union, 2021-03-21) Hayes, Christopher T. ; Costa, Kassandra M. ; Anderson, Robert F. ; Calvo, Eva ; Chase, Zanna ; Demina, Ludmila L. ; Dutay, Jean-Claude ; German, Christopher R. ; Heimbürger, Lars-Eric ; Jaccard, Samuel L. ; Jacobel, Allison W. ; Kohfeld, Karen E. ; Kravchishina, Marina ; Lippold, Jörg ; Mekik, Figen ; Missiaen, Lise ; Pavia, Frank ; Paytan, Adina ; Pedrosa-Pamies, Rut ; Petrova, Mariia V. ; Rahman, Shaily ; Robinson, Laura F. ; Roy-Barman, Matthieu ; Sanchez-Vidal, Anna ; Shiller, Alan M. ; Tagliabue, Alessandro ; Tessin, Allyson C. ; van Hulten, Marco ; Zhang, Jing
    Quantitative knowledge about the burial of sedimentary components at the seafloor has wide-ranging implications in ocean science, from global climate to continental weathering. The use of 230Th-normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th-normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep-sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep-sea budgets. Our integrated deep-sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo-productivity proxies (TOC, biogenic opal, and Baxs) are not well-correlated geographically with satellite-based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation.
  • Article
    230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean
    (John Wiley & Sons, 2020-01-27) Costa, Kassandra M. ; Hayes, Christopher T. ; Anderson, Robert F. ; Pavia, Frank ; Bausch, Alexandra ; Deng, Feifei ; Dutay, Jean-Claude ; Geibert, Walter ; Heinze, Christoph ; Henderson, Gideon M. ; Hillaire‐Marcel, Claude ; Hoffmann, Sharon S. ; Jaccard, Samuel L. ; Jacobel, Allison W. ; Kienast, Stephanie S. ; Kipp, Lauren ; Lerner, Paul ; Lippold, Jörg ; Lund, David C. ; Marcantonio, Franco ; McGee, David ; McManus, Jerry F. ; Mekik, Figen ; Middleton, Jennifer L. ; Missiaen, Lise ; Not, Christelle ; Pichat, Sylvain ; Robinson, Laura F. ; Rowland, George H. ; Roy-Barman, Matthieu ; Tagliabue, Alessandro ; Torfstein, Adi ; Winckler, Gisela ; Zhou, Yuxin
    230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (>1,000 m water depth).