Shen
Chuan-Chou
Shen
Chuan-Chou
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
PreprintArchaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys( 2009-12-06) Brazelton, William J. ; Ludwig, Kristin A. ; Sogin, Mitchell L. ; Andreishcheva, Ekaterina N. ; Kelley, Deborah S. ; Shen, Chuan-Chou ; Edwards, R. Lawrence ; Baross, John A.The Lost City Hydrothermal Field, an ultramafic-hosted system located 15 km west of the Mid-Atlantic Ridge, has experienced at least 30,000 years of hydrothermal activity. Previous studies have shown that its carbonate chimneys form by mixing of ~90ºC, pH 9-11 hydrothermal fluids and cold seawater. Flow of methane and hydrogen-rich hydrothermal fluids in the porous interior chimney walls supports archaeal biofilm communities dominated by a single phylotype of Methanosarcinales. In this study, we have extensively sampled the carbonate-hosted archaeal and bacterial communities by obtaining sequences of >200,000 amplicons of the 16S rRNA V6 region and correlated the results with isotopic (230Th) ages of the chimneys over a 1200 year period. Rare sequences in young chimneys were often more abundant in older chimneys, indicating that members of the rare biosphere can become dominant members of the ecosystem when environmental conditions change. These results suggest that a long history of selection over many cycles of chimney growth has resulted in numerous closely related species at Lost City, each of which is pre-adapted to a particular set of re-occurring environmental conditions. Due to the unique characteristics of the Lost City Hydrothermal Field, these data offer an unprecedented opportunity to study the dynamics of a microbial ecosystem's rare biosphere over a thousand-year time scale.
-
ArticleDynamic millennial-scale climate changes in the northwestern Pacific over the past 40,000 years(American Geophysical Union, 2010-12-03) Chen, Min-Te ; Lin, Xiaopei ; Chang, Yuan-Pin ; Chen, Y.-C. ; Lo, L. ; Shen, Chuan-Chou ; Yokoyama, Yusuke ; Oppo, Delia W. ; Thompson, William G. ; Zhang, RongIce core records of polar temperatures and greenhouse gases document abrupt millennial-scale oscillations that suggest the reduction or shutdown of thermohaline Circulation (THC) in the North Atlantic Ocean may induce the abrupt cooling in the northern hemisphere. It remains unknown, however, whether the sea surface temperature (SST) is cooling or warming in the Kuroshio of the Northwestern Pacific during the cooling event. Here we present an AMS 14C-dated foraminiferal Mg/Ca SST record from the central Okinawa Trough and document that the SST variations exhibit two steps of warming since 21 ka — at 14.7 ka and 12.8 ka, and a cooling (∼1.5°C) during the interval of the Younger Dryas. By contrast, we observed no SST change or oceanic warming (∼1.5–2°C) during the episodes of Northern Hemisphere cooling between ∼21–40 ka. We therefore suggest that the “Antarctic-like” timing and amplitude of millennial-scale SST variations in the subtropical Northwestern Pacific between 20–40 ka may have been determined by rapid ocean adjustment processes in response to abrupt wind stress and meridional temperature gradient changes in the North Pacific.