Dlugokencky Edward J.

No Thumbnail Available
Last Name
Dlugokencky
First Name
Edward J.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2
    (John Wiley & Sons, 2014-11-19) Keppel-Aleks, Gretchen ; Wolf, Aaron S. ; Mu, Mingquan ; Doney, Scott C. ; Morton, Douglas C. ; Kasibhatla, Prasad S. ; Miller, John B. ; Dlugokencky, Edward J. ; Randerson, James T.
    The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how the temporal evolution of CO2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each of these mechanisms during 1997–2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr−1 K−1. These results underscore the need for accurate attribution of the drivers of CO2 variability prior to using contemporary observations to constrain long-term ESM responses.
  • Preprint
    The terrestrial biosphere as a net source of greenhouse gases to the atmosphere
    ( 2015-12-21) Tian, Hanqin ; Lu, Chaoqun ; Ciais, Philippe ; Michalak, Anna M. ; Canadell, Josep G. ; Saikawa, Eri ; Huntzinger, Deborah N. ; Gurney, Kevin R. ; Sitch, Stephen ; Zhang, Bowen ; Yang, Jia ; Bousquet, Philippe ; Bruhwiler, Lori ; Chen, Guangsheng ; Dlugokencky, Edward J. ; Friedlingstein, Pierre ; Melillo, Jerry M. ; Pan, Shufen ; Poulter, Benjamin ; Prinn, Ronald G. ; Saunois, Marielle ; Schwalm, Christopher R. ; Wofsy, Steven C.
    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and therefore plays an important role in regulating atmospheric composition and climate1. Anthropogenic activities such as land use change, agricultural and waste management have altered terrestrial biogenic greenhouse gas fluxes and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate warming2,3. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively4-6, but the net biogenic greenhouse gas balance as a result of anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (BU: e.g., inventory, statistical extrapolation of local flux measurements, process-based modeling) and top-down (TD: atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981-2010 as a result of anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic CH4 and N2O emissions is about a factor of 2 larger than the cooling effect resulting from the global land CO2 uptake in the 2000s. This results in a net positive cumulative impact of the three GHGs on the planetary energy budget, with a best estimate of 3.9±3.8 Pg CO2 eq/yr (TD) and 5.4±4.8 Pg CO2 eq/yr (BU) based on the GWP 100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural CH4 and N2O emissions in particular in Southern Asia may help mitigate climate change.
  • Article
    Sea–air CO2 fluxes in the Indian Ocean between 1990 and 2009
    (Copernicus Publications on behalf of the European Geosciences Union, 2013-11-06) Sarma, V. V. S. S. ; Lenton, Andrew ; Law, R. M. ; Metzl, Nicolas ; Patra, Prabir K. ; Doney, Scott C. ; Lima, Ivan D. ; Dlugokencky, Edward J. ; Ramonet, M. ; Valsala, V.
    The Indian Ocean (44° S–30° N) plays an important role in the global carbon cycle, yet it remains one of the most poorly sampled ocean regions. Several approaches have been used to estimate net sea–air CO2 fluxes in this region: interpolated observations, ocean biogeochemical models, atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Indian Ocean sea–air CO2 fluxes between 1990 and 2009. Using all of the models and inversions, the median annual mean sea–air CO2 uptake of −0.37 ± 0.06 PgC yr−1 is consistent with the −0.24 ± 0.12 PgC yr−1 calculated from observations. The fluxes from the southern Indian Ocean (18–44° S; −0.43 ± 0.07 PgC yr−1 are similar in magnitude to the annual uptake for the entire Indian Ocean. All models capture the observed pattern of fluxes in the Indian Ocean with the following exceptions: underestimation of upwelling fluxes in the northwestern region (off Oman and Somalia), overestimation in the northeastern region (Bay of Bengal) and underestimation of the CO2 sink in the subtropical convergence zone. These differences were mainly driven by lack of atmospheric CO2 data in atmospheric inversions, and poor simulation of monsoonal currents and freshwater discharge in ocean biogeochemical models. Overall, the models and inversions do capture the phase of the observed seasonality for the entire Indian Ocean but overestimate the magnitude. The predicted sea–air CO2 fluxes by ocean biogeochemical models (OBGMs) respond to seasonal variability with strong phase lags with reference to climatological CO2 flux, whereas the atmospheric inversions predicted an order of magnitude higher seasonal flux than OBGMs. The simulated interannual variability by the OBGMs is weaker than that found by atmospheric inversions. Prediction of such weak interannual variability in CO2 fluxes by atmospheric inversions was mainly caused by a lack of atmospheric data in the Indian Ocean. The OBGM models suggest a small strengthening of the sink over the period 1990–2009 of −0.01 PgC decade−1. This is inconsistent with the observations in the southwestern Indian Ocean that shows the growth rate of oceanic pCO2 was faster than the observed atmospheric CO2 growth, a finding attributed to the trend of the Southern Annular Mode (SAM) during the 1990s.