Sullivan Matthew B.

No Thumbnail Available
Last Name
Sullivan
First Name
Matthew B.
ORCID

Search Results

Now showing 1 - 6 of 6
  • Preprint
    Corrigendum "Portal protein diversity and phage ecology"
    ( 2011-10) Sullivan, Matthew B. ; Coleman, Maureen L. ; Quinlivan, Vanessa ; Rosenkrantz, Jessica E. ; DeFrancesco, Alicia S. ; Tan, G. ; Fu, Ross ; Lee, Jessica A. ; Waterbury, John B. ; Bielawski, Joseph P. ; Chisholm, Sallie W.
  • Article
    Three Prochlorococcus cyanophage genomes : signature features and ecological interpretations
    (Public Library of Science (PLoS), 2005-04-19) Sullivan, Matthew B. ; Coleman, Maureen L. ; Weigele, Peter ; Rohwer, Forest ; Chisholm, Sallie W.
    The oceanic cyanobacteria Prochlorococcus are globally important, ecologically diverse primary producers. It is thought that their viruses (phages) mediate population sizes and affect the evolutionary trajectories of their hosts. Here we present an analysis of genomes from three Prochlorococcus phages: a podovirus and two myoviruses. The morphology, overall genome features, and gene content of these phages suggest that they are quite similar to T7-like (P-SSP7) and T4-like (P-SSM2 and P-SSM4) phages. Using the existing phage taxonomic framework as a guideline, we examined genome sequences to establish ‘‘core’’ genes for each phage group. We found the podovirus contained 15 of 26 core T7-like genes and the two myoviruses contained 43 and 42 of 75 core T4-like genes. In addition to these core genes, each genome contains a significant number of ‘‘cyanobacterial’’ genes, i.e., genes with significant best BLAST hits to genes found in cyanobacteria. Some of these, we speculate, represent ‘‘signature’’ cyanophage genes. For example, all three phage genomes contain photosynthetic genes (psbA, hliP) that are thought to help maintain host photosynthetic activity during infection, as well as an aldolase family gene (talC) that could facilitate alternative routes of carbon metabolism during infection. The podovirus genome also contains an integrase gene (int) and other features that suggest it is capable of integrating into its host. If indeed it is, this would be unprecedented among cultured T7-like phages or marine cyanophages and would have significant evolutionary and ecological implications for phage and host. Further, both myoviruses contain phosphate-inducible genes (phoH and pstS) that are likely to be important for phage and host responses to phosphate stress, a commonly limiting nutrient in marine systems. Thus, these marine cyanophages appear to be variations of two well-known phages—T7 and T4—but contain genes that, if functional, reflect adaptations for infection of photosynthetic hosts in low-nutrient oceanic environments.
  • Article
    Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters
    (Springer Nature, 2020-11-16) Gazitúa, M. Consuelo ; Vik, Dean R. ; Roux, Simon ; Gregory, Ann C. ; Bolduc, Benjamin ; Widner, Brittany ; Mulholland, Margaret R. ; Hallam, Steven J. ; Ulloa, Osvaldo ; Sullivan, Matthew B.
    Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs) involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs (80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline for their inclusion in the ecosystem and geochemical models.
  • Article
    The Tara Pacific expedition-A pan-ecosystemic approach of the "-omics" complexity of coral reef holobionts across the Pacific Ocean
    (Public Library of Science, 2019-09-23) Planes, Serge ; Allemand, Denis ; Agostini, Sylvain ; Banaigs, Bernard ; Boissin, Emilie ; Boss, Emmanuel S. ; Bourdin, Guillaume ; Bowler, Chris ; Douville, Eric ; Flores, J. Michel ; Forcioli, Didier ; Furla, Paola ; Galand, Pierre E. ; Ghiglione, Jean-Francois ; Gilson, Eric ; Lombard, Fabien ; Moulin, Clémentine ; Pesant, Stephane ; Poulain, Julie ; Reynaud, Stephanie ; Romac, Sarah ; Sullivan, Matthew B. ; Sunagawa, Shinichi ; Thomas, Olivier P. ; Troublé, Romain ; de Vargas, Colomban ; Vega Thurber, Rebecca ; Voolstra, Christian R. ; Wincker, Patrick ; Tara Pacific Consortium
    Coral reefs are the most diverse habitats in the marine realm. Their productivity, structural complexity, and biodiversity critically depend on ecosystem services provided by corals that are threatened because of climate change effects—in particular, ocean warming and acidification. The coral holobiont is composed of the coral animal host, endosymbiotic dinoflagellates, associated viruses, bacteria, and other microeukaryotes. In particular, the mandatory photosymbiosis with microalgae of the family Symbiodiniaceae and its consequences on the evolution, physiology, and stress resilience of the coral holobiont have yet to be fully elucidated. The functioning of the holobiont as a whole is largely unknown, although bacteria and viruses are presumed to play roles in metabolic interactions, immunity, and stress tolerance. In the context of climate change and anthropogenic threats on coral reef ecosystems, the Tara Pacific project aims to provide a baseline of the “-omics” complexity of the coral holobiont and its ecosystem across the Pacific Ocean and for various oceanographically distinct defined areas. Inspired by the previous Tara Oceans expeditions, the Tara Pacific expedition (2016–2018) has applied a pan-ecosystemic approach on coral reefs throughout the Pacific Ocean, drawing an east–west transect from Panama to Papua New Guinea and a south–north transect from Australia to Japan, sampling corals throughout 32 island systems with local replicates. Tara Pacific has developed and applied state-of-the-art technologies in very-high-throughput genetic sequencing and molecular analysis to reveal the entire microbial and chemical diversity as well as functional traits associated with coral holobionts, together with various measures on environmental forcing. This ambitious project aims at revealing a massive amount of novel biodiversity, shedding light on the complex links between genomes, transcriptomes, metabolomes, organisms, and ecosystem functions in coral reefs and providing a reference of the biological state of modern coral reefs in the Anthropocene.
  • Article
    Portal protein diversity and phage ecology
    (Society for Applied Microbiology and Blackwell Publishing, 2008-07-31) Sullivan, Matthew B. ; Coleman, Maureen L. ; Quinlivan, Vanessa ; Rosenkrantz, Jessica E. ; DeFrancesco, Alicia S. ; Tan, G. ; Fu, Ross ; Lee, Jessica A. ; Waterbury, John B. ; Bielawski, Joseph P. ; Chisholm, Sallie W.
    Oceanic phages are critical components of the global ecosystem, where they play a role in microbial mortality and evolution. Our understanding of phage diversity is greatly limited by the lack of useful genetic diversity measures. Previous studies, focusing on myophages that infect the marine cyanobacterium Synechococcus, have used the coliphage T4 portal-protein-encoding homologue, gene 20 (g20), as a diversity marker. These studies revealed 10 sequence clusters, 9 oceanic and 1 freshwater, where only 3 contained cultured representatives. We sequenced g20 from 38 marine myophages isolated using a diversity of Synechococcus and Prochlorococcus hosts to see if any would fall into the clusters that lacked cultured representatives. On the contrary, all fell into the three clusters that already contained sequences from cultured phages. Further, there was no obvious relationship between host of isolation, or host range, and g20 sequence similarity. We next expanded our analyses to all available g20 sequences (769 sequences), which include PCR amplicons from wild uncultured phages, non-PCR amplified sequences identified in the Global Ocean Survey (GOS) metagenomic database, as well as sequences from cultured phages, to evaluate the relationship between g20 sequence clusters and habitat features from which the phage sequences were isolated. Even in this meta-data set, very few sequences fell into the sequence clusters without cultured representatives, suggesting that the latter are very rare, or sequencing artefacts. In contrast, sequences most similar to the culture-containing clusters, the freshwater cluster and two novel clusters, were more highly represented, with one particular culture-containing cluster representing the dominant g20 genotype in the unamplified GOS sequence data. Finally, while some g20 sequences were non-randomly distributed with respect to habitat, there were always numerous exceptions to general patterns, indicating that phage portal proteins are not good predictors of a phage's host or the habitat in which a particular phage may thrive.
  • Article
    Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline
    (Springer Nature, 2020-08-14) Mara, Paraskevi ; Vik, Dean R. ; Pachiadaki, Maria G. ; Suter, Elizabeth A. ; Poulos, Bonnie ; Taylor, Gordon T. ; Sullivan, Matthew B. ; Edgcomb, Virginia P.
    Little is known about viruses in oxygen-deficient water columns (ODWCs). In surface ocean waters, viruses are known to act as gene vectors among susceptible hosts. Some of these genes may have metabolic functions and are thus termed auxiliary metabolic genes (AMGs). AMGs introduced to new hosts by viruses can enhance viral replication and/or potentially affect biogeochemical cycles by modulating key microbial pathways. Here we identify 748 viral populations that cluster into 94 genera along a vertical geochemical gradient in the Cariaco Basin, a permanently stratified and euxinic ocean basin. The viral communities in this ODWC appear to be relatively novel as 80 of these viral genera contained no reference viral sequences, likely due to the isolation and unique features of this system. We identify viral elements that encode AMGs implicated in distinctive processes, such as sulfur cycling, acetate fermentation, signal transduction, [Fe–S] formation, and N-glycosylation. These AMG-encoding viruses include two putative Mu-like viruses, and viral-like regions that may constitute degraded prophages that have been modified by transposable elements. Our results provide an insight into the ecological and biogeochemical impact of viruses oxygen-depleted and euxinic habitats.