Hajdas Irka

No Thumbnail Available
Last Name
Hajdas
First Name
Irka
ORCID

Search Results

Now showing 1 - 4 of 4
  • Preprint
    The co-evolution of Black Sea level and composition through the last deglaciation and its paleoclimatic significance
    ( 2006-01-28) Major, Candace O. ; Goldstein, Steven L. ; Ryan, William B. F. ; Lericolais, Gilles ; Piotrowski, Alexander M. ; Hajdas, Irka
    The strontium and oxygen isotopic compositions of carbonate shells are a measure of the water delivered to the Black Sea lake since the last glacial maximum. Commencing at ~18 ka BP cal with the arrival of substantial meltwater from the Alpine and northern European ice sheets and overflow via the Caspian Sea from the disintegrating Siberian ice cover, the 87Sr/86Sr ratio rose rapidly from a glacial minima around 0.7087 to reach a set of peaks near 0.7091 in layers of conspicuous reddish-brown clay with a mineralogy of Eurasian provenance. The 87Sr/86Sr ratio oscillates between high in the red-brown layers to low in interbedded gray clays with glacial era mineralogy, indicative that the meltwater came in pulses. On the other hand, the rise of the δ18O ratio from glacial low values of -7 per mil was delayed until15.2 ka BP cal, after the last meltwater pulse. The rising δ18O of the Black Sea lake corresponds with two episodes of calcite precipitation whose interruption corresponds to the Younger Dryas cold period. During each interval of calcite precipitation the δ18O increased a further 2 per mil, without variation in the 87Sr/86Sr composition. During cooling the 87Sr/86Sr ratio trended back toward its glacial value with little change in the δ18O. The disparity between the Sr and O isotope behavior demonstrates that δ18O is not simply a signal of end-member mixing, but instead the δ18O record reflects changes in atmospheric moisture delivered to the Black Sea watershed. At 9.4 ka BP cal the 87Sr/86Sr composition shifted to that of the global ocean and remained there to the present. Since lake water is significantly depleted in strontium relative to seawater, any earlier leakage from the Mediterranean should have left a corresponding signal.
  • Article
    Consistently dated Atlantic sediment cores over the last 40 thousand years
    (Nature Research, 2019-09-02) Waelbroeck, Claire ; Lougheed, Bryan C. ; Vazquez Riveiros, Natalia ; Missiaen, Lise ; Pedro, Joel ; Dokken, Trond ; Hajdas, Irka ; Wacker, Lukas ; Abbott, Peter ; Dumoulin, Jean-Pascal ; Thil, Francois ; Eynaud, Frederique ; Rossignol, Linda ; Fersi, Wiem ; Albuquerque, Ana Luiza ; Arz, Helge W. ; Austin, William E. N. ; Came, Rosemarie E. ; Carlson, Anders E. ; Collins, James A. ; Dennielou, Bernard ; Desprat, Stéphanie ; Dickson, Alex ; Elliot, Mary ; Farmer, Christa ; Giraudeau, Jacques ; Gottschalk, Julia ; Henderiks, Jorijntje ; Hughen, Konrad A. ; Jung, Simon ; Knutz, Paul ; Lebreiro, Susana ; Lund, David C. ; Lynch-Stieglitz, Jean ; Malaizé, Bruno ; Marchitto, Thomas M. ; Martínez-Méndez, Gema ; Mollenhauer, Gesine ; Naughton, Filipa ; Nave, Silvia ; Nürnberg, Dirk ; Oppo, Delia W. ; Peck, Vicky L. ; Peeters, Frank J. C. ; Penaud, Aurélie ; Portilho-Ramos, Rodrigo da Costa ; Repschläger, Janne ; Roberts, Jenny ; Ruhlemann, Carsten ; Salgueiro, Emilia ; Sanchez Goni, Maria Fernanda ; Schönfeld, Joachim ; Scussolini, Paolo ; Skinner, Luke C. ; Skonieczny, Charlotte ; Thornalley, David J. R. ; Toucanne, Samuel ; Van Rooij, David ; Vidal, Laurence ; Voelker, Antje H. L. ; Wary, Mélanie ; Weldeab, Syee ; Ziegler, Martin
    Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.
  • Article
    The Intcal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP)
    (Cambridge University Press, 2020-08-12) Reimer, Paula J. ; Austin, William E. N. ; Bard, Edouard ; Bayliss, Alex ; Blackwell, Paul G. ; Bronk Ramsey, Christopher ; Butzin, Martin ; Cheng, Hai ; Edwards, R. Lawrence ; Friedrich, Michael ; Grootes, Pieter M. ; Guilderson, Thomas P. ; Hajdas, Irka ; Heaton, Timothy J. ; Hogg, Alan G. ; Hughen, Konrad A. ; Kromer, Bernd ; Manning, Sturt W. ; Muscheler, Raimund ; Palmer, Jonathan G. ; Pearson, Charlotte ; van der Plicht, Johannes ; Reimer, Ron W. ; Richards, David A. ; Scott, E. Marian ; Southon, John R. ; Turney, Christian S. M. ; Wacker, Lukas ; Adolphi, Florian ; Büntgen, Ulf ; Capano, Manuela ; Fahrni, Simon M. ; Fogtmann-Schulz, Alexandra ; Friedrich, Ronny ; Köhler, Peter ; Kudsk, Sabrina ; Miyake, Fusa ; Olsen, Jesper ; Reinig, Frederick ; Sakamoto, Minoru ; Sookdeo, Adam ; Talamo, Sahra
    Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
  • Article
    IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP
    (Dept. of Geosciences, University of Arizona, 2009-12) Reimer, Paula J. ; Bard, Edouard ; Bayliss, Alex ; Beck, J. Warren ; Blackwell, Paul G. ; Bronk Ramsey, Christopher ; Buck, Caitlin E. ; Cheng, Hai ; Edwards, R. Lawrence ; Friedrich, Michael ; Grootes, Pieter M. ; Guilderson, Thomas P. ; Haflidason, Haflidi ; Hajdas, Irka ; Hatte, Christine ; Heaton, Timothy J. ; Hoffmann, Dirk L. ; Hogg, Alan G. ; Hughen, Konrad A. ; Kaiser, K. Felix ; Kromer, Bernd ; Manning, Sturt W. ; Niu, Mu ; Reimer, Ron W. ; Richards, David A. ; Scott, E. Marian ; Southon, John R. ; Staff, Richard A. ; Turney, Christian S. M. ; van der Plicht, Johannes
    The IntCal04 and Marine04 radiocarbon calibration curves have been updated from 12 cal kBP (cal kBP is here defined as thousands of calibrated years before AD 1950), and extended to 50 cal kBP, utilizing newly available data sets that meet the IntCal Working Group criteria for pristine corals and other carbonates and for quantification of uncertainty in both the 14C and calendar timescales as established in 2002. No change was made to the curves from 0–12 cal kBP. The curves were constructed using a Markov chain Monte Carlo (MCMC) implementation of the random walk model used for IntCal04 and Marine04. The new curves were ratified at the 20th International Radiocarbon Conference in June 2009 and are available in the Supplemental Material at www.radiocarbon.org.