Zimmermann Sarah

No Thumbnail Available
Last Name
Zimmermann
First Name
Sarah
ORCID
0000-0001-7852-1138

Search Results

Now showing 1 - 8 of 8
  • Article
    Variations in rates of biological production in the Beaufort Gyre as the arctic changes: Rates from 2011 to 2016
    (American Geophysical Union, 2019-04-30) Ji, Brenda Y. ; Sandwith, Zoe O. ; Williams, William J. ; Diaconescu, Oana ; Ji, Rubao ; Li, Yun ; Van Scoy, Emma ; Yamamoto-Kawai, Michiyo ; Zimmermann, Sarah ; Stanley, Rachel H. R.
    The Arctic Ocean is experiencing profound environmental changes as the climate warms. Understanding how these changes will affect Arctic biological productivity is key for predicting future Arctic ecosystems and the global CO2 balance. Here we use in situ gas measurements to quantify rates of gross oxygen production (GOP, total photosynthesis) and net community production (NCP, net CO2 drawdown by the biological pump) in the mixed layer in summer or fall from 2011 to 2016 in the Beaufort Gyre. NCP and GOP show spatial and temporal variations with higher values linked with lower concentrations of sea ice and increased upper ocean stratification. Mean rates of GOP range from 8 ± 1 to 54 ± 9 mmol O2·m−2·d−1 with the highest mean rates occurring in summer of 2012. Mean rates of NCP ranged from 1.3 ± 0.2 to 2.9 ± 0.5 mmol O2·m−2·d−1. The mean ratio of NCP/GOP, a measure of how efficiently the ecosystem is recycling its nutrients, ranged from 0.04 to 0.17, similar to ratios observed at lower latitudes. Additionally, a large increase in total photosynthesis that occurred in 2012, a year of historically low sea ice coverage, persisted for many years. Taken together, these data provide one of the most complete characterizations of interannual variations of biological productivity in this climatically important region, can serve as a baseline for future changes in rates of production, and give an intriguing glimpse of how this region of the Arctic may respond to future lack of sea ice.
  • Article
    Pacific Ocean inflow : influence on catastrophic reduction of sea ice cover in the Arctic Ocean
    (American Geophysical Union, 2006-04-21) Shimada, Koji ; Kamoshida, Takashi ; Itoh, Motoyo ; Nishino, Shigeto ; Carmack, Eddy C. ; McLaughlin, Fiona A. ; Zimmermann, Sarah ; Proshutinsky, Andrey
    The spatial pattern of recent ice reduction in the Arctic Ocean is similar to the distribution of warm Pacific Summer Water (PSW) that interflows the upper portion of halocline in the southern Canada Basin. Increases in PSW temperature in the basin are also well-correlated with the onset of sea-ice reduction that began in the late 1990s. However, increases in PSW temperature in the basin do not correlate with the temperature of upstream source water in the northeastern Bering Sea, suggesting that there is another mechanism which controls these concurrent changes in ice cover and upper ocean temperature. We propose a feedback mechanism whereby the delayed sea-ice formation in early winter, which began in 1997/1998, reduced internal ice stresses and thus allowed a more efficient coupling of anticyclonic wind forcing to the upper ocean. This, in turn, increased the flux of warm PSW into the basin and caused the catastrophic changes.
  • Technical Report
    Knorr 147 leg v hydrographic data report : Labrador Sea Deep Convection Experiment
    (Woods Hole Oceanographic Institution, 2000-05) Zimmermann, Sarah ; McKee, Theresa K. ; Pickart, Robert S. ; Smethie, William M.
    Between 2 February and 20 March 1997, the first phase of the Labrador Sea Deep Convection Experiment was carried out on R/V Knorr, during which 127 hydrographic stations were occupied throughout the Labrador basin. This included five boundary crossings (two on the east and three on the west). Special emphasis was placed on the western portion of the basin were deep convection occurs. Expendable Bathy Thermographs (XBTs) were launched regularly to increase resolution near the boundary and to help optimally place interior stations. Three "to-yo" CTD surveys were conducted, and Langrangian floats were delpoyed throughout the cruise. Despite extremely difficult working conditions, this cruise was successful in observing deep convection under "classic" wintertime conditions. This report describes the CTD operation and performance and also presents vertical profiles of CTD Potential Temperature, Salinity, and Potential Density (referenced to the surface and 1500 db) plotted versus Depth. Instructions for obtaining the data via anonymous FTP are included in Appendix B.
  • Article
    Beaufort Gyre freshwater reservoir : state and variability from observations
    (American Geophysical Union, 2009-06-24) Proshutinsky, Andrey ; Krishfield, Richard A. ; Timmermans, Mary-Louise ; Toole, John M. ; Carmack, Eddy C. ; McLaughlin, Fiona A. ; Williams, William J. ; Zimmermann, Sarah ; Itoh, Motoyo ; Shimada, Koji
    We investigate basin-scale mechanisms regulating anomalies in freshwater content (FWC) in the Beaufort Gyre (BG) of the Arctic Ocean using historical observations and data collected in 2003–2007. Specifically, the mean annual cycle and interannual and decadal FWC variability are explored. The major cause of the large FWC in the BG is the process of Ekman pumping (EP) due to the Arctic High anticyclonic circulation centered in the BG. The mean seasonal cycle of liquid FWC is a result of interplay between the mechanical (EP) and thermal (ice transformations) factors and has two peaks. One peak occurs around June–July when the sea ice thickness reaches its minimum (maximum ice melt). The second maximum is observed in November–January when wind curl is strongest (maximum EP) and the salt input from the growing ice has not yet reached its maximum. Interannual changes in FWC during 2003–2007 are characterized by a strong positive trend in the region varying by location with a maximum of approximately 170 cm a−1 in the center of EP influenced region. Decadal FWC variability in the period 1950–2000 is dominated by a significant change in the 1990s forced by an atmospheric circulation regime change. The center of maximum FWC shifted to the southeast and appeared to contract in area relative to the pre-1990s climatology. In spite of the areal reduction, the spatially integrated FWC increased by over 1000 km3 relative to climatology.
  • Technical Report
    Western Arctic Shelf-Basin Interactions Experiment : processing and calibration of moored profiler data from the Beaufort Shelf Edge mooring array
    (Woods Hole Oceanographic Institution, 2006-12) Fratantoni, Paula S. ; Zimmermann, Sarah ; Pickart, Robert S. ; Swartz, Marshall
    A high-resolution mooring array was deployed at the edge of the continental shelf in the Beaufort Sea as a part of the western Arctic Shelf-Basin Interactions Program, a multidisciplinary experiment that was designed to study the communication between the continental shelf and interior basin. Eight moorings were positioned along a section crossing the shelfbreak and upper slope in two consecutive year-long deployments, spanning the period August 2002 through September 2004. Seven of the eight moorings housed conductivity/temperature/depth moored profilers that sampled 2-4 times per day, amassing close to 3000 profiles during the two-year study period. This report documents the collection, calibration, and quality control of this moored profiler data.
  • Article
    Declining O2 in the Canada Basin Halocline consistent with physical and biogeochemical effects of Pacific summer water warming
    (American Geophysical Union, 2023-03-05) Arroyo, Ashley ; Timmermans, Mary‐Louise ; Le Bras, Isabela ; Williams, William ; Zimmermann, Sarah
    The Arctic Ocean's Canada Basin (CB) has seen significant changes in ocean properties in the past two decades. A prominent change has been a warming of the Pacific Summer Water (PSW) layer in the central CB. The corresponding change in dissolved oxygen (O2) is analyzed here to provide additional insight into PSW physics and biology, pathways, and evolution. O2 observations are analyzed between 2003 and 2021 from the Joint Ocean Ice Study/Beaufort Gyre Observing System (JOIS/BGOS) field program, which samples CB hydrographic and biogeochemical properties. In the central CB, warming of the PSW layer over 2003–2021 has been accompanied by O2 decreases over this time in the layer. Nutrients and other biogeochemical properties are analyzed to quantify the combined influences of both physical changes and biological changes on the evolution of O2 concentrations in the CB PSW. In the upper portion of the PSW, O2 decreases can be entirely accounted for by surface warming (and corresponding decrease in O2 solubility) of its source waters in the Chukchi Sea region. In the deeper portion of the PSW layer, the observed O2 changes are larger, and are accounted for by a combination of the decreased solubility effect due to warming, and increased organic matter breakdown in warmer waters. Decreasing O2 in a warming Arctic Ocean is consonant with O2 trends in the warming global oceans, and highlights the need for continued observations and analyses.
  • Article
    Analysis of the Beaufort Gyre freshwater content in 2003-2018
    (American Geophysical Union, 2019-12-11) Proshutinsky, Andrey ; Krishfield, Richard A. ; Toole, John M. ; Timmermans, Mary-Louise ; Williams, William J. ; Zimmermann, Sarah ; Yamamoto-Kawai, Michiyo ; Armitage, Thomas ; Dukhovskoy, Dmitry S. ; Golubeva, Elena ; Manucharyan, Georgy E. ; Platov, Gennady A. ; Watanabe, Eiji ; Kikuchi, Takashi ; Nishino, Shigeto ; Itoh, Motoyo ; Kang, Sung-Ho ; Cho, Kyoung-Ho ; Tateyama, Kazutaka ; Zhao, Jing
    Hydrographic data collected from research cruises, bottom‐anchored moorings, drifting Ice‐Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km3 of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997–2018) accompanied by sea ice melt, a wind‐forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice‐Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year‐to‐year variability, or the more subtle interannual variations.
  • Article
    The Pacific water flow branches in the eastern Chukchi Sea
    (Elsevier, 2023-11-10) Pickart, Robert S. ; Lin, Peigen ; Bahr, Frank B. ; McRaven, Leah T. ; Huang, Jie ; Pacini, Astrid ; Arrigo, Kevin Robert ; Ashjian, Carin J. ; Berchok, Catherine L. ; Baumgartner, Mark F. ; Cho, Kyoungho ; Cooper, Lee W. ; Danielson, Seth L. ; Dasher, Doug H. ; Fuiwara, Amane ; Gann, Jeanette C. ; Grebmeier, Jacqueline M. ; He, Jiangfeng ; Hirawake, Toru ; Itoh, Motoyo ; Juranek, Laurie ; Kikuchi, Takashi ; Moore, G. W. Kent ; Napp, Jeffrey M. ; John Nelson, R. ; Nishino, Shigeto ; Statscewich, Hank ; Stabeno, Phyllis J. ; Stafford, Kathleen M. ; Ueno, Hiromichi ; Vagle, Svein ; Weingartner, Thomas J. ; Williams, Bill ; Zimmermann, Sarah L.
    The flow of Pacific-origin water across the Chukchi Sea shelf impacts the regional ecosystem in profound ways, yet the two current branches on the eastern shelf that carry the water from Bering Strait to Barrow Canyon – the Alaskan Coastal Current (ACC) and Central Channel (CC) Branch – have not been clearly distinguished or quantified. In this study we use an extensive collection of repeat hydrographic sections occupied at three locations on the Chukchi shelf, together with data from a climatology of shipboard velocity data, to accomplish this. The data were collected predominantly between 2010 and 2020 during the warm months of the year as part of the Distributed Biological Observatory and Arctic Observing Network. The mean sections show that mass is balanced for both currents at the three locations: Bering Strait, Point Hope, and Barrow Canyon. The overall mean ACC transport is 0.34 ± 0.04 Sv, and that of the CC Branch is 0.86 ± 0.11 Sv. The dominant hydrographic variability at Bering Strait is seasonal, but this becomes less evident to the north. At Barrow Canyon, the dominant hydrographic signal is associated with year-to-year variations in sea-ice melt. Farther south there is pronounced mesoscale variability: an empirical orthogonal function analysis at Bering Strait and Point Hope reveals a distinct ACC mode and CC Branch mode in hydrography and baroclinic transport, where the former is wind-driven. Finally, the northward evolution in properties of the two currents is investigated. The poleward increase in salinity of the ACC can be explained by lateral mixing alone, but solar heating together with wind mixing play a large role in the temperature evolution. This same atmospheric forcing also impacts the northward evolution of the CC Branch.