Umanzor Schery

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 6 of 6
  • Article
    Population genetics of sugar kelp throughout the Northeastern United States genome-wide markers
    (Frontiers Media, 2020-08-21) Mao, Xiaowei ; Augyte, Simona ; Huang, Mao ; Hare, Matthew P. ; Bailey, David ; Umanzor, Schery ; Marty-Rivera, Michael ; Robbins, Kelly R. ; Yarish, Charles ; Lindell, Scott ; Jannink, Jean-Luc
    An assessment of genetic diversity of marine populations is critical not only for the understanding and preserving natural biodiversity but also for its commercial potential. As commercial demand rises for marine resources, it is critical to generate baseline information for monitoring wild populations. Furthermore, anthropogenic stressors on the coastal environment, such as warming sea temperatures and overharvesting of wild populations, are leading to the destruction of keystone marine species such as kelps. In this study, we conducted a fine-scale genetic analysis using genome-wide high-density markers on Northwest Atlantic sugar kelp. The population structure for a total of 149 samples from the Gulf of Maine (GOM) and Southern New England (SNE) was investigated using AMOVA, FST, admixture, and PCoA. Genome-wide association analyses were conducted for six morphological traits, and the extended Lewontin and Krakauer (FLK) test was used to detect selection signatures. Our results indicate that the GOM region is more heterogeneous than SNE. These two regions have large genetic difference (between-location FST ranged from 0.21 to 0.32) and were separated by Cape Cod, which is known to be the biogeographic barrier for other taxa. We detected one significant SNP (P = 2.03 × 10–7) associated with stipe length, and 248 SNPs with higher-than-neutral differentiation. The findings of this study provide baseline knowledge on sugar kelp population genetics for future monitoring, managing and potentially restoring wild populations, as well as assisting in selective breeding to improve desirable traits for future commercialization opportunities.
  • Article
    Simulation of sugar kelp (Saccharina latissima) breeding guided by practices to accelerate genetic gains
    (Genetics Society of America, 2022-01-19) Huang, Mao ; Robbins, Kelly R. ; Li, Yaoguang ; Umanzor, Schery ; Marty-Rivera, Michael ; Bailey, David ; Yarish, Charles ; Lindell, Scott ; Jannink, Jean-Luc
    Though Saccharina japonica cultivation has been established for many decades in East Asian countries, the domestication process of sugar kelp (Saccharina latissima) in the Northeast United States is still at its infancy. In this study, by using data from our breeding experience, we will demonstrate how obstacles for accelerated genetic gain can be assessed using simulation approaches that inform resource allocation decisions. Thus far, we have used 140 wild sporophytes that were sampled in 2018 from the northern Gulf of Maine to southern New England. From these sporophytes, we sampled gametophytes and made and evaluated over 600 progeny sporophytes from crosses among the gametophytes in 2019 and 2020. The biphasic life cycle of kelp gives a great advantage in selective breeding as we can potentially select both on the sporophytes and gametophytes. However, several obstacles exist, such as the amount of time it takes to complete a breeding cycle, the number of gametophytes that can be maintained in the laboratory, and whether positive selection can be conducted on farm-tested sporophytes. Using the Gulf of Maine population characteristics for heritability and effective population size, we simulated a founder population of 1,000 individuals and evaluated the impact of overcoming these obstacles on rate of genetic gain. Our results showed that key factors to improve current genetic gain rely mainly on our ability to induce reproduction of the best farm-tested sporophytes, and to accelerate the clonal vegetative growth of released gametophytes so that enough gametophyte biomass is ready for making crosses by the next growing season. Overcoming these challenges could improve rates of genetic gain more than 2-fold. Future research should focus on conditions favorable for inducing spring reproduction, and on increasing the amount of gametophyte tissue available in time to make fall crosses in the same year.
  • Article
    Skinny kelp (Saccharina angustissima) provides valuable genetics for the biomass improvement of farmed sugar kelp (Saccharina latissima)
    (Springer, 2022-08-20) Li, Yaoguang ; Umanzor, Schery ; Ng, Crystal ; Huang, Mao ; Marty-Rivera, Michael ; Bailey, David ; Aydlett, Margaret ; Jannink, Jean-Luc ; Lindell, Scott ; Yarish, Charles
    Saccharina latissima (sugar kelp) is one of the most widely cultivated brown marine macroalgae species in the North Atlantic and the eastern North Pacific Oceans. To meet the expanding demands of the sugar kelp mariculture industry, selecting and breeding sugar kelp that is best suited to offshore farm environments is becoming necessary. To that end, a multi-year, multi-institutional breeding program was established by the U.S. Department of Energy's (DOE) Advanced Research Projects Agency-Energy (ARPA-E) Macroalgae Research Inspiring Novel Energy Resources (MARINER) program. Hybrid sporophytes were generated using 203 unique gametophyte cultures derived from wild-collected Saccharina spp. for two seasons of farm trials (2019–2020 and 2020–2021). The wild sporophytes were collected from 10 different locations within the Gulf of Maine (USA) region, including both sugar kelp (Saccharina latissima) and the skinny kelp species (Saccharina angustissima). We harvested 232 common farm plots during these two seasons with available data. We found that farmed kelp plots with skinny kelp as parents had an average increased yield over the mean (wet weight 2.48 ± 0.90 kg m−1 and dry weight 0.32 ± 0.10 kg m−1) in both growing seasons. We also found that blade length positively correlated with biomass in skinny kelp x sugar kelp crosses or pure sugar kelp crosses. The skinny x sugar progenies had significantly longer and narrower blades than the pure sugar kelp progenies in both seasons. Overall, these findings suggest that sugar x skinny kelp crosses provide improved yield compared to pure sugar kelp crosses.
  • Article
    Comparative analysis of morphometric traits of farmed sugar kelp and skinny kelp, Saccharina spp., strains from the Northwest Atlantic
    (Wiley, 2021-03-23) Umanzor, Schery ; Li, Yaoguang ; Bailey, David ; Augyte, Simona ; Huang, Mao ; Marty-Rivera, Michael ; Jannink, Jean-Luc ; Yarish, Charles ; Lindell, Scott
    Our team has initiated a selective breeding program for regional strains of sugar kelp, Saccharina latissima, to improve the competitiveness of kelp farming in the United States. Within our breeding program, we also include an endemic putative species, Saccharina angustissima, locally referred to as skinny kelp. We crossed uniclonal gametophyte cultures derived from 37 wild‐collected blades representing five sugar kelp strains and one skinny kelp strain to produce 104 unique crosses. Each cross was outplanted on a near‐shore research farm located in the Gulf of Maine (GOM). After the first farming season, our results indicated that sugar kelp and skinny kelp were interfertile, and produced mature and reproductively viable sporophytes. Morphological traits of individual blades varied depending on the parental contribution (sugar vs. skinny), with significant differences found in progeny blade length, width, thickness, and in stipe length and diameter. Despite these differences, wet weight and blade density per plot showed no statistical differences regardless of the cross. Given their published genetic similarity and their interfertility shown here, S. angustissima and S. latissima may not be different species, and may each contribute genetic diversity to breeding programs aimed at meeting ocean farming and market needs.
  • Article
    Estimating production cost for large-scale seaweed farms
    (Taylor and Francis, 2022-11-11) Kite-Powell, Hauke L. ; Ask, Erick ; Augyte, Simona ; Bailey, David ; Decker, Julie ; Goudey, Clifford A. ; Grebe, Gretchen ; Li, Yaoguang ; Lindell, Scott ; Manganelli, Domenic ; Marty-Rivera, Michael ; Ng, Crystal ; Roberson, Loretta ; Stekoll, Michael ; Umanzor, Schery ; Yarish, Charles
    Seaweed farming has the potential to produce feedstocks for many applications, including food, feeds, fertilizers, biostimulants, and biofuels. Seaweeds have advantages over land-based biomass in that they require no freshwater inputs and no allocation of arable land. To date, seaweed farming has not been practiced at scales relevant to meaningful biofuel production. Here we describe a techno-economic model of large-scale seaweed farms and its application to the cultivation of the cool temperate species Saccharina latissima (sugar kelp) and the tropical seaweed Eucheumatopsis isiformis. At farm scales of 1000 ha or more, our model suggests that farm gate production costs in waters up to 200 km from the onshore support base are likely to range between $200 and $300 per dry tonne. The model also suggests that production costs below $100 per dry tonne may be achievable in some settings, which would make these seaweeds economically competitive with land-based biofuel feedstocks. While encouraging, these model results and some assumptions on which they are based require further field validation.
  • Article
    Genomic selection in algae with biphasic lifecycles: a Saccharina latissima (sugar kelp) case study
    (Frontiers Media, 2023-02-22) Huang, Mao ; Robbins, Kelly R. ; Li, Yaoguang ; Umanzor, Schery ; Marty-Rivera, Michael ; Bailey, David ; Aydlett, Margaret ; Schmutz, Jeremy ; Grimwood, Jane ; Yarish, Charles ; Lindell, Scott ; Jannink, Jean-Luc
    Introduction Sugar kelp ( Saccharina latissima ) has a biphasic life cycle, allowing selection on both thediploid sporophytes (SPs) and haploid gametophytes (GPs). Methods We trained a genomic selection (GS) model from farm-tested SP phenotypic data and used a mixed-ploidy additive relationship matrix to predict GP breeding values. Topranked GPs were used to make crosses for further farm evaluation. The relationship matrix included 866 individuals: a) founder SPs sampled from the wild; b) progeny GPs from founders; c) Farm-tested SPs crossed from b); and d) progeny GPs from farm-tested SPs. The complete pedigree-based relationship matrix was estimated for all individuals. A subset of founder SPs ( n = 58) and GPs ( n = 276) were genotyped with Diversity Array Technology and whole genome sequencing, respectively. We evaluated GS prediction accuracy via cross validation for SPs tested on farm in 2019 and 2020 using a basic GBLUP model. We also estimated the general combining ability (GCA) and specific combining ability (SCA) variances of parental GPs. A total of 11 yield-related and morphology traits were evaluated. Results The cross validation accuracies for dry weight per meter ( r ranged from 0.16 to 0.35) and wet weight per meter ( r ranged 0.19 to 0.35) were comparable to GS accuracy for yield traits in terrestrial crops. For morphology traits, cross validation accuracy exceeded 0.18 in all scenarios except for blade thickness in the second year. Accuracy in a third validation year (2021) was 0.31 for dry weight per meter over a confirmation set of 87 individuals. Discussion Our findings indicate that progress can be made in sugar kelp breeding by using genomic selection.