Qiu Bo

No Thumbnail Available
Last Name
Qiu
First Name
Bo
ORCID
0000-0003-3841-6450

Search Results

Now showing 1 - 14 of 14
  • Article
    Characteristics of 3-dimensional structure and heat budget of mesoscale eddies in the South Atlantic Ocean
    (American Geophysical Union, 2021-04-26) Wang, Xue ; Zhang, Shaoqing ; Lin, Xiaopei ; Qiu, Bo ; Yu, Lisan
    Mesoscale eddies redistribute heat, salt, and nutrients in oceans. The South Atlantic Ocean (SA) is a basin that has active mesoscale eddies for which characteristics of the three-dimensional structure and its leading mechanism are complex but have yet been studied sufficiently. Here based on ocean reanalysis datasets we use a composite analysis approach to analyze the mixed layer anomalous heat budget and find distinct two types of spatial patterns: dipole and monopole – mainly present in the northern and southern regions of the SA, respectively. The dipole can be attributed to ocean horizontal advection, especially to the combined effect of eddy anomalous meridional current and meridional gradient of mean temperature. The monopole, on the other hand, is associated with complex contributions, for which zonal and meridional advections play opposite roles as cooling or heating around the eddies. At the eddy center, the vertical advection is non-negligible, especially the mean upwelling and vertical temperature gradient playing a vital role in the formation of a monopole. The analysis of eddy meridional heat transport shows that the stirring component is dominant, and poleward in most areas, especially at high latitudes. Such analysis on the leading mechanism of eddy-induced temperature anomaly could help improve our understanding on meso- and small-scale air-sea interactions and eddy-induced heat transport in the SA.
  • Preprint
    Enhanced warming over the global subtropical western boundary currents
    ( 2011-11) Wu, Lixin ; Cai, Wenju ; Zhang, Liping ; Nakamura, Hisashi ; Timmermann, Axel ; Joyce, Terrence M. ; McPhaden, Michael J. ; Alexander, Michael A. ; Qiu, Bo ; Visbeck, Martin ; Chang, Ping ; Giese, Benjamin
    Subtropical western boundary currents are warm, fast flowing currents that form on the western side of ocean basins. They carry warm tropical water to the mid-latitudes and vent large amounts of heat and moisture to the atmosphere along their paths, affecting atmospheric jet streams and mid-latitude storms, as well as ocean carbon uptake. The possibility that these highly energetic and nonlinear currents might change under greenhouse gas forcing has raised significant concerns, but detecting such changes is challenging owing to limited observations. Here, using reconstructed sea surface temperature datasets and newly developed century-long ocean and atmosphere reanalysis products, we find that the post-1900 surface ocean warming rate over the path of these currents is two to three times faster than the global mean surface ocean warming rate. The accelerated warming is associated with a synchronous poleward shift and/or intensification of global subtropical western boundary currents in conjunction with a systematic change in winds over both hemispheres. This enhanced warming may reduce ocean's ability to absorb anthropogenic carbon dioxide over these regions. However, uncertainties in detection and attribution of these warming trends remain, pointing to a need for a long-term monitoring network of the global western boundary currents and their extensions.
  • Article
    Low-frequency eddy modulations in the Hawaiian Lee Countercurrent : observations and connection to the Pacific Decadal Oscillation
    (American Geophysical Union, 2011-12-08) Yoshida, Sachiko ; Qiu, Bo ; Hacker, Peter
    Interannual-to-decadal time scale eddy variability in the Hawaiian Lee Countercurrent (HLCC) band is investigated using the available sea surface height, sea surface temperature, and surface wind stress data sets. In the HLCC band of 17°N–21.7°N and 170E°–160°W, the prevailing interannual eddy kinetic energy (EKE) signals show enhanced eddy activities in 1993–1998 and 2002–2006, and subpar eddy activities in 1999–2001 and 2007–2009. These interannual EKE signals exhibit little connection to the zonal HLCC velocity changes generated by the dipolar wind stress curl forcing in the immediate lee of the island of Hawaii. Instead, they are highly correlated to the time series of the Pacific Decadal Oscillation (PDO) index. Through a budget analysis for the meridional temperature gradient along the HLCC, we find that during the positive phase of the PDO index, the surface heat flux forcing induces cold (warm) sea surface temperature (SST) anomalies to the north (south) of the HLCC, intensifying the vertical shear between the surface, eastward-flowing HLCC and the subsurface, westward-flowing North Equatorial Current (NEC). This increased vertical shear enhances the baroclinic instability of the HLCC-NEC system and leads to a higher regional EKE level. The opposite processes occur when the PDO switches to a negative phase with the resulting lowered EKE level along the HLCC band. Compared to the surface heat flux forcing, the Ekman flux convergence forcing is found to play a minor role in modifying the meridional SST changes along the HLCC band.
  • Article
    Corrigendum to “Formation and erosion of the seasonal thermocline in the Kuroshio Extension Recirculation gyre” [Deep-Sea Res. II 85 (2013) 62–74]
    (Elsevier, 2016-08-08) Cronin, Meghan F. ; Bond, Nicholas A. ; Farrar, J. Thomas ; Ichikawa, Hiroshi ; Jayne, Steven R. ; Kawai, Yoshimi ; Konda, Masanori ; Qiu, Bo ; Rainville, Luc ; Tomita, Hiroyuki
  • Preprint
    The Kuroshio Extension and its recirculation gyres
    ( 2009-07-01) Jayne, Steven R. ; Hogg, Nelson G. ; Waterman, Stephanie N. ; Rainville, Luc ; Donohue, Kathleen A. ; Watts, D. Randolph ; Tracey, Karen L. ; McClean, Julie L. ; Maltrud, Mathew E. ; Qiu, Bo ; Chen, Shuiming ; Hacker, Peter
    This paper reports on the strength and structure of the Kuroshio Extension and its recirculation gyres. In the time average, quasi-permanent recirculation gyres are found to the north and south of the Kuroshio Extension jet. The characteristics of recirculation gyres are determined from the combined observations from the Kuroshio Extension System Study (KESS) field program program (June 2004 – June 2006) and include current meters, pressure and current recording inverted echo sounders, and sub-surface floats. The position and strength of the recirculation gyres simulated by a high-resolution numerical model are found to be consistent with the observations. The circulation pattern that is revealed is of a complex system of multiple recirculation gyres that are embedded in the crests and troughs of the quasi-permanent meanders of the Kuroshio Extension. At the location of the KESS array, the Kuroshio Extension jet and its recirculation gyres transport of about 114 Sv. This represents a 2.7-fold increase in the transport of the current compared to the Kuroshio’s transport at Cape Ashizuri before it separates from the coast and flows eastward into the open ocean. This enhancement in the current’s transport comes from the development of the flanking recirculation gyres. Estimates from an array of inverted echo sounders and a high-resolution ocean general circulation model are of similar magnitude.
  • Article
    Formation and erosion of the seasonal thermocline in the Kuroshio Extension Recirculation Gyre
    (Elsevier Ltd., 2012-07-21) Cronin, Meghan F. ; Bond, Nicholas A. ; Farrar, J. Thomas ; Ichikawa, Hiroshi ; Jayne, Steven R. ; Kawai, Yoshimi ; Konda, Masanori ; Qiu, Bo ; Rainville, Luc ; Tomita, Hiroyuki
    Data from the Kuroshio Extension Observatory (KEO) surface mooring are used to analyze the balance of processes affecting the upper ocean heat content and surface mixed layer temperature variations in the Recirculation Gyre (RG) south of the Kuroshio Extension (KE). Cold and dry air blowing across the KE and its warm RG during winter cause very large heat fluxes out of the ocean that result in the erosion of the seasonal thermocline in the RG. Some of this heat is replenished through horizontal heat advection, which may enable the seasonal thermocline to begin restratifying while the net surface heat flux is still acting to cool the upper ocean. Once the surface heat flux begins warming the ocean, restratification occurs rapidly due to the low thermal inertia of the shallow mixed layer depth. Enhanced diffusive mixing below the mixed layer tends to transfer some of the mixed layer heat downward, eroding and potentially modifying sequestered subtropical mode water and even the deeper waters of the main thermocline during winter. Diffusivity at the base of the mixed layer, estimated from the residual of the mixed layer temperature balance, is roughly 3×10−4 m2/s during the summer and up to two orders of magnitude larger during winter. The enhanced diffusivities appear to be due to large inertial shear generated by wind events associated with winter storms and summer tropical cyclones. The diffusivity's seasonality is likely due to seasonal variations in stratification just below the mixed layer depth, which is large during the summer when the seasonal thermocline is fully developed and low during the winter when the mixed layer extends to the top of the thermocline.
  • Article
    An observing system simulation experiment for the calibration and validation of the surface water ocean topography sea surface height measurement using in situ platforms
    (American Meteorological Society, 2018-02-07) Wang, Jinbo ; Fu, Lee-Lueng ; Qiu, Bo ; Menemenlis, Dimitris ; Farrar, J. Thomas ; Chao, Yi ; Thompson, Andrew F. ; Flexas, M. Mar
    The wavenumber spectrum of sea surface height (SSH) is an important indicator of the dynamics of the ocean interior. While the SSH wavenumber spectrum has been well studied at mesoscale wavelengths and longer, using both in situ oceanographic measurements and satellite altimetry, it remains largely unknown for wavelengths less than ~70 km. The Surface Water Ocean Topography (SWOT) satellite mission aims to resolve the SSH wavenumber spectrum at 15–150-km wavelengths, which is specified as one of the mission requirements. The mission calibration and validation (CalVal) requires the ground truth of a synoptic SSH field to resolve the targeted wavelengths, but no existing observational network is able to fulfill the task. A high-resolution global ocean simulation is used to conduct an observing system simulation experiment (OSSE) to identify the suitable oceanographic in situ measurements for SWOT SSH CalVal. After fixing 20 measuring locations (the minimum number for resolving 15–150-km wavelengths) along the SWOT swath, four instrument platforms were tested: pressure-sensor-equipped inverted echo sounders (PIES), underway conductivity–temperature–depth (UCTD) sensors, instrumented moorings, and underwater gliders. In the context of the OSSE, PIES was found to be an unsuitable tool for the target region and for SSH scales 15–70 km; the slowness of a single UCTD leads to significant aliasing by high-frequency motions at short wavelengths below ~30 km; an array of station-keeping gliders may meet the requirement; and an array of moorings is the most effective system among the four tested instruments for meeting the mission’s requirement. The results shown here warrant a prelaunch field campaign to further test the performance of station-keeping gliders.
  • Technical Report
    Monthly atmospheric and oceanographic surface fields for the western North Atlantic : December, 1986-April, 1989
    (Woods Hole Oceanographic Institution, 1995-04) Caruso, Michael J. ; Singh, Sandipa ; Kelly, Kathryn A. ; Qiu, Bo
    Monthly atmospheric and oceanographic variables for the western North Atlantic Ocean from various sources are presented as contour or vector maps. These fields were assembled for a study of the upper ocean heat budget. Atmospheric fields include the net surface heat fluxes and wind stress derived from the 1000 mb winds from the European Centre for Medium-range Weather Forecasting (ECMWF). Oceanographic fields include the sea surface height from the Geosat radar altimeter and sea surface temperature from the Advanced Very High Resolution Radiometer (AVHRR). An additional estimate of net surface heat flux is shown; this estimate was derived by assimilating winds, currents and ocean temperatures into a mixed layer model. The maps show a complex interplay of fluctuations in the winds and heat fluxes, and in the structure and temperature gradients of the Gulf Stream system. Some comments are offered on a comparison of the two heat flux estimates.
  • Article
    Flow Encountering Abrupt Topography (FLEAT): a multiscale observational and modeling program to understand how topography affects flows in the western North Pacific
    (Oceanography Society, 2019-12-11) Johnston, T. M. Shaun ; Schönau, Martha ; Paluszkiewicz, Theresa ; MacKinnon, Jennifer A. ; Arbic, Brian K. ; Colin, Patrick L. ; Alford, Matthew H. ; Andres, Magdalena ; Centurioni, Luca R. ; Graber, Hans C. ; Helfrich, Karl R. ; Hormann, Verena ; Lermusiaux, Pierre F. J. ; Musgrave, Ruth C. ; Powell, Brian S. ; Qiu, Bo ; Rudnick, Daniel L. ; Simmons, Harper L. ; St. Laurent, Louis C. ; Terrill, Eric ; Trossman, David S. ; Voet, Gunnar ; Wijesekera, Hemantha W. ; Zeide, Kristin L.
    Using a combination of models and observations, the US Office of Naval Research Flow Encountering Abrupt Topography (FLEAT) initiative examines how island chains and submerged ridges affect open ocean current systems, from the hundreds of kilometer scale of large current features to the millimeter scale of turbulence. FLEAT focuses on the western Pacific, mainly on equatorial currents that encounter steep topography near the island nation of Palau. Wake eddies and lee waves as small as 1 km were observed to form as these currents flowed around or over the steep topography. The direction and vertical structure of the incident flow varied over tidal, inertial, seasonal, and interannual timescales, with implications for downstream flow. Models incorporated tides and had grids with resolutions of hundreds of meters to enable predictions of flow transformations as waters encountered and passed around Palau’s islands. In addition to making scientific advances, FLEAT had a positive impact on the local Palauan community by bringing new technology to explore local waters, expanding the country’s scientific infrastructure, maintaining collaborations with Palauan partners, and conducting outreach activities aimed at elementary and high school students, US embassy personnel, and Palauan government officials.
  • Article
    The annual cycle of the Japan Sea throughflow
    (American Meteorological Society, 2016-01) Kida, Shinichiro ; Qiu, Bo ; Yang, Jiayan ; Lin, Xiaopei
    The mechanism responsible for the annual cycle of the flow through the straits of the Japan Sea is investigated using a two-layer model. Observations show maximum throughflow from summer to fall and minimum in winter, occurring synchronously at the three major straits: Tsushima, Tsugaru, and Soya Straits. This study finds the subpolar winds located to the north of Japan as the leading forcing agent, which first affects the Soya Strait rather than the Tsushima or Tsugaru Straits. The subpolar winds generate baroclinic Kelvin waves along the coastlines of the subpolar gyre, affect the sea surface height at the Soya Strait, and modify the flow through the strait. This causes barotropic adjustment to occur inside the Japan Sea and thus affect the flow at the Tsugaru and Tsushima Straits almost synchronously. The barotropic adjustment mechanism explains well why the observations show a similar annual cycle at the three straits. The annual cycle at the Tsugaru Strait is further shown to be weaker than that in the other two straits based on frictional balance around islands, that is, frictional stresses exerted around an island integrate to zero. In the Tsugaru Strait, the flows induced by the frictional integrals around the northern (Hokkaido) and southern (Honshu) islands are in opposite directions and tend to cancel out. Frictional balance also suggests that the annual cycle at the Tsugaru Strait is likely in phase with that at the Soya Strait because the length scale of the northern island is much shorter than that of the southern island.
  • Article
    Observations of the subtropical mode water evolution from the Kuroshio Extension System Study
    (American Meteorological Society, 2006-03) Qiu, Bo ; Hacker, Peter ; Chen, Shuiming ; Donohue, Kathleen A. ; Watts, D. Randolph ; Mitsudera, Humio ; Hogg, Nelson G. ; Jayne, Steven R.
    Properties and seasonal evolution of North Pacific Ocean subtropical mode water (STMW) within and south of the Kuroshio Extension recirculation gyre are analyzed from profiling float data and additional hydrographic and shipboard ADCP measurements taken during 2004. The presence of an enhanced recirculation gyre and relatively low mesoscale eddy variability rendered this year favorable for the formation of STMW. Within the recirculation gyre, STMW formed from late-winter convection that reached depths greater than 450 m near the center of the gyre. The lower boundary of STMW, corresponding to σθ 25.5 kg m−3, was set by the maximum depth of the late-winter mixed layer. Properties within the deep portions of the STMW layer remained largely unchanged as the season progressed. In contrast, the upper boundary of the STMW layer eroded steadily as the seasonal thermocline deepened from late April to August. Vertical eddy diffusivity responsible for this erosion was estimated from a budget analysis of potential vorticity to be in the range of 2–5 × 10−4 m2 s−1. The latitudinal extent of the STMW formation was narrow, extending from 30°N to the Kuroshio Extension jet near 35°N. South of 30°N, STMW did not form locally but was transported from the recirculation gyre by lateral induction.
  • Article
    Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction : a review
    (American Meteorological Society, 2010-06-15) Kwon, Young-Oh ; Alexander, Michael A. ; Bond, Nicholas A. ; Frankignoul, Claude ; Nakamura, Hisashi ; Qiu, Bo ; Thompson, LuAnne
    Ocean–atmosphere interaction over the Northern Hemisphere western boundary current (WBC) regions (i.e., the Gulf Stream, Kuroshio, Oyashio, and their extensions) is reviewed with an emphasis on their role in basin-scale climate variability. SST anomalies exhibit considerable variance on interannual to decadal time scales in these regions. Low-frequency SST variability is primarily driven by basin-scale wind stress curl variability via the oceanic Rossby wave adjustment of the gyre-scale circulation that modulates the latitude and strength of the WBC-related oceanic fronts. Rectification of the variability by mesoscale eddies, reemergence of the anomalies from the preceding winter, and tropical remote forcing also play important roles in driving and maintaining the low-frequency variability in these regions. In the Gulf Stream region, interaction with the deep western boundary current also likely influences the low-frequency variability. Surface heat fluxes damp the low-frequency SST anomalies over the WBC regions; thus, heat fluxes originate with heat anomalies in the ocean and have the potential to drive the overlying atmospheric circulation. While recent observational studies demonstrate a local atmospheric boundary layer response to WBC changes, the latter’s influence on the large-scale atmospheric circulation is still unclear. Nevertheless, heat and moisture fluxes from the WBCs into the atmosphere influence the mean state of the atmospheric circulation, including anchoring the latitude of the storm tracks to the WBCs. Furthermore, many climate models suggest that the large-scale atmospheric response to SST anomalies driven by ocean dynamics in WBC regions can be important in generating decadal climate variability. As a step toward bridging climate model results and observations, the degree of realism of the WBC in current climate model simulations is assessed. Finally, outstanding issues concerning ocean–atmosphere interaction in WBC regions and its impact on climate variability are discussed.
  • Article
    Global perspectives on observing ocean boundary current systems
    (Frontiers Media, 2019-08-08) Todd, Robert E. ; Chavez, Francisco P. ; Clayton, Sophie A. ; Cravatte, Sophie ; Goes, Marlos Pereira ; Graco, Michelle ; Lin, Xiaopei ; Sprintall, Janet ; Zilberman, Nathalie ; Archer, Matthew ; Arístegui, Javier ; Balmaseda, Magdalena A. ; Bane, John M. ; Baringer, Molly O. ; Barth, John A. ; Beal, Lisa M. ; Brandt, Peter ; Calil, Paulo H. R. ; Campos, Edmo ; Centurioni, Luca R. ; Chidichimo, Maria Paz ; Cirano, Mauro ; Cronin, Meghan F. ; Curchitser, Enrique N. ; Davis, Russ E. ; Dengler, Marcus ; deYoung, Brad ; Dong, Shenfu ; Escribano, Ruben ; Fassbender, Andrea ; Fawcett, Sarah E. ; Feng, Ming ; Goni, Gustavo J. ; Gray, Alison R. ; Gutiérrez, Dimitri ; Hebert, Dave ; Hummels, Rebecca ; Ito, Shin-ichi ; Krug, Marjolaine ; Lacan, Francois ; Laurindo, Lucas ; Lazar, Alban ; Lee, Craig M. ; Lengaigne, Matthieu ; Levine, Naomi M. ; Middleton, John ; Montes, Ivonne ; Muglia, Michael ; Nagai, Takeyoshi ; Palevsky, Hilary I. ; Palter, Jaime B. ; Phillips, Helen E. ; Piola, Alberto R. ; Plueddemann, Albert J. ; Qiu, Bo ; Rodrigues, Regina ; Roughan, Moninya ; Rudnick, Daniel L. ; Rykaczewski, Ryan R. ; Saraceno, Martin ; Seim, Harvey E. ; Sen Gupta, Alexander ; Shannon, Lynne ; Sloyan, Bernadette M. ; Sutton, Adrienne J. ; Thompson, LuAnne ; van der Plas, Anja K. ; Volkov, Denis L. ; Wilkin, John L. ; Zhang, Dongxiao ; Zhang, Linlin
    Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.
  • Article
    The Kuroshio Extension northern recirculation gyre : profiling float measurements and forcing mechanism
    (American Meteorological Society, 2008-08) Qiu, Bo ; Chen, Shuiming ; Hacker, Peter ; Hogg, Nelson G. ; Jayne, Steven R. ; Sasaki, Hideharu
    Middepth, time-mean circulation in the western North Pacific Ocean (28°–45°N, 140°–165°E) is investigated using drift information from the profiling floats deployed in the Kuroshio Extension System Study (KESS) and the International Argo programs. A well-defined, cyclonic recirculation gyre (RG) is found to exist north of the Kuroshio Extension jet, confined zonally between the Japan Trench (145°E) and the Shatsky Rise (156°E), and bordered to the north by the subarctic boundary along 40°N. This northern RG, which is simulated favorably in the eddy-resolving OGCM for the Earth Simulator (OFES) hindcast run model, has a maximum volume transport at 26.4 Sv across 159°E and its presence persists on the interannual and longer time scales. An examination of the time-mean x-momentum balance from the OFES hindcast run output reveals that horizontal convergence of Reynolds stresses works to accelerate both the eastward-flowing Kuroshio Extension jet and a westward mean flow north of the meandering jet. The fact that the northern RG is eddy driven is further confirmed by examining the turbulent Sverdrup balance, in which convergent eddy potential vorticity fluxes are found to induce the cyclonic RG across the background potential vorticity gradient field. For the strength of the simulated northern RG, the authors find the eddy dissipation effect to be important as well.