Burns
Stephen J.
Burns
Stephen J.
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
ArticleEvidence for decreased precipitation variability in the Yucatán Peninsula during the mid-Holocene(American Geophysical Union, 2021-05-06) Serrato Marks, Gabriela ; Medina-Elizalde, Martín ; Burns, Stephen J. ; Weldeab, Syee ; Lases-Hernandez, Fernanda ; Cazares, Gabriela ; McGee, DavidThe Yucatán Peninsula (YP) has a complex hydroclimate with many proposed drivers of interannual and longer-term variability, ranging from coupled ocean–atmosphere processes to frequency of tropical cyclones. The mid-Holocene, a time of higher Northern Hemisphere summer insolation, provides an opportunity to test the relationship between YP precipitation and ocean temperature. Here, we present a new, ∼annually resolved speleothem record of stable isotope (δ18O and δ13C) and trace element (Mg/Ca and Sr/Ca) ratios for a section of the mid-Holocene (5.2–5.7 kyr BP), before extensive agriculture began in the region. A meter-long stalagmite from Río Secreto, a cave system in Playa del Carmen, Mexico, was dated using U–Th geochronology and layer counting, yielding multidecadal age uncertainty (median 2SD of ±70 years). New proxy data were compared to an existing late Holocene stalagmite record from the same cave system, allowing us to examine changes in hydrology over time and to paleoclimate records from the southern YP. The δ18O, δ13C, and Mg/Ca data consistently indicate higher mean precipitation and lower precipitation variability during the mid-Holocene compared to the late Holocene. Despite this reduced variability, multidecadal precipitation variations were persistent in regional hydroclimate during the mid-Holocene. We therefore conclude that higher summer insolation led to increased mean precipitation and decreased precipitation variability in the northern YP but that the region is susceptible to dry periods across climate mean states. Given projected decreases in wet season precipitation in the YP’s near future, we suggest that climate mitigation strategies emphasize drought preparation.
-
PreprintThe role of North Brazil Current transport in the paleoclimate of the Brazilian Nordeste margin and paleoceanography of the western tropical Atlantic during the late Quaternary( 2014-05) Nace, Trevor E. ; Baker, Paul A. ; Dwyer, Gary S. ; Silva, Cleverson G. ; Rigsby, Catherine A. ; Burns, Stephen J. ; Giosan, Liviu ; Otto-Bliesner, Bette ; Liu, Zhengyu ; Zhu, JiangReconstructions of surface paleoceanographic conditions of the western equatorial Atlantic and past climates of the adjacent Northeast Brazilian (the "Nordeste") continental margin were undertaken by analyzing sediments from a piston core and associated gravity and box cores recovered from 3107 meter water depth at 0° 20’ N on the equatorial Brazilian continental slope. The record is dated by radiocarbon analysis and oxygen isotopic stratigraphy of planktonic foraminifers and spans from near- modern to approximately 110 Ka. High-resolution XRF analysis provides insight into the paleoclimate history of the Nordeste during the last glacial interval. Several large-amplitude and abrupt peaks are observed in the time series of Ti/Ca and are usually accompanied by peaks of Fe/K. Together these record periods of increased precipitation and intense weathering on the adjacent continent and increased terrestrial sediment discharge from Nordeste rivers into the Atlantic. Within the limits of dating accuracy, most Ti/Ca peaks correlate with Heinrich events in the North Atlantic. This record thus corroborates, and extends back in time, the previous record of Arz et al (1998) determined on sediment cores from farther southeast along the Nordeste margin. Stable oxygen isotopic analysis and Mg/Ca paleothermometry on the near- surface-dwelling planktonic foraminiferal species Globierinoides ruber find that mean sea-surface temperature (SST) during glacial time (20 to 55 Ka, n = 97) was 23.89 ± 0.79 °C and the mean SST during the late Holocene (0 to 5 Ka, n = 14) was 26.89 ± 0.33 °C. SSTs were 0.5 to 2 °C higher and inferred sea-surface salinities were lower during most of the periods of elevated Ti/Ca, thus, as observed in previous studies, the western equatorial Atlantic was warm (at least locally) and the adjacent southern tropical continent was wet at the same time that the high-latitude North Atlantic was cold. Using the SYNTRACE-CCSM3 fully coupled climate model with transient forcing for the period 22 Ka to present, we find that decreased transport of the North Brazil Current co-occurs with reduced Atlantic meridional overturning circulation, and colder-than-normal SSTs in the North Atlantic region. These simulated conditions are invariably associated with significantly increased precipitation in the Nordeste region.
-
ArticleZonal Indian Ocean variability drives millennial-scale precipitation changes in Northern Madagascar(American Geophysical Union, 2023-11-07) Tiger, Benjamin H. ; Burns, Stephen J. ; Dawson, Robin R. ; Scroxton, Nick ; Godfrey, Laurie R. ; Ranivoharimanana, Lovasoa ; Faina, Peterson ; McGee, DavidThe low latitude Indian Ocean is warming faster than other tropical basins, and its interannual climate variability is projected to become more extreme under future emissions scenarios with substantial impacts on developing Indian Ocean rim countries. Therefore, it has become increasingly important to understand the drivers of regional precipitation in a changing climate. Here we present a new speleothem record from Anjohibe, a cave in northwest (NW) Madagascar well situated to record past changes in the Intertropical Convergence Zone (ITCZ). U-Th ages date speleothem growth from 27 to 14 ka. δ18O, δ13C, and trace metal proxies reconstruct drier conditions during Heinrich Stadials 1 and 2, and wetter conditions during the Last Glacial Maximum and Bølling–Allerød. This is surprising considering hypotheses arguing for southward (northward) ITCZ shifts during North Atlantic cooling (warming) events, which would be expected to result in wetter (drier) conditions at Anjohibe in the Southern Hemisphere tropics. The reconstructed Indian Ocean zonal (west-east) sea surface temperature (SST) gradient is in close agreement with hydroclimate proxies in NW Madagascar, with periods of increased precipitation correlating with relatively warmer conditions in the western Indian Ocean and cooler conditions in the eastern Indian Ocean. Such gradients could drive long-term shifts in the strength of the Walker circulation with widespread effects on hydroclimate across East Africa. These results suggest that during abrupt millennial-scale climate changes, it is not meridional ITCZ shifts, but the tropical Indian Ocean SST gradient and Walker circulation driving East African hydroclimate variability.
-
ArticleZonal control on Holocene precipitation in northwestern Madagascar based on a stalagmite from Anjohibe(Nature Research, 2024-03-06) Dawson, Robin R. ; Burns, Stephen J. ; Tiger, Benjamin H. ; McGee, David ; Faina, Peterson ; Scroxton, Nick ; Godfrey, Laurie R. ; Ranivoharimanana, LovasoaThe Malagasy Summer Monsoon is an important part of the larger Indian Ocean and tropical monsoon region. As the effects of global warming play out, changes to precipitation in Madagascar will have important ramifications for the Malagasy people. To help understand how precipitation responds to climate changes we present a long-term Holocene speleothem record from Anjohibe, part of the Andranoboka cave system in northwestern Madagascar. To date, it is the most complete Holocene record from this region and sheds light on the nature of millennial and centennial precipitation changes in this region. We find that over the Holocene, precipitation in northwestern Madagascar is actually in phase with the Northern Hemisphere Asian monsoon on multi-millennial scales, but that during some shorter centennial-scale events such as the 8.2 ka event, Anjohibe exhibits an antiphase precipitation signal to the Northern Hemisphere. The ultimate driver of precipitation changes across the Holocene does not appear to be the meridional migration of the monsoon. Instead, zonal sea surface temperature gradients in the Indian Ocean seem to play a primary role in precipitation changes in northwestern Madagascar.