Burckle Lloyd H.

No Thumbnail Available
Last Name
Burckle
First Name
Lloyd H.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Comparing glacial and Holocene opal fluxes in the Pacific sector of the Southern Ocean
    (American Geophysical Union, 2009-06-03) Bradtmiller, Louisa I. ; Anderson, Robert F. ; Fleisher, Martin Q. ; Burckle, Lloyd H.
    The silicic acid leakage hypothesis (SALH) predicts that during glacial periods excess silicic acid was transported from the Southern Ocean to lower latitudes, which favored diatom production over coccolithophorid production and caused a drawdown of atmospheric CO2. Downcore records of 230Th-normalized opal (biogenic silica) fluxes from 31 cores in the Pacific sector of the Southern Ocean were used to compare diatom productivity during the last glacial period to that of the Holocene and to examine the evidence for increased glacial Si export to the tropics. Average glacial opal fluxes south of the modern Antarctic Polar Front (APF) were less than during the Holocene, while average glacial opal fluxes north of the APF were greater than during the Holocene. However, the magnitude of the increase north of the APF was not enough to offset decreased fluxes to the south, resulting in a decrease in opal burial in the Pacific sector of the Southern Ocean during the last glacial period, equivalent to approximately 15 Gt opal ka−1. This is consistent with the work of Chase et al. (2003a), and satisfies the primary requirement of the SALH, assuming that the upwelled supply of Si was approximately equivalent during the Holocene and the glacial period. However, previous results from the equatorial oceans are inconsistent with the other predictions of the SALH, namely that either the Corg:CaCO3 ratio or the rate of opal burial should have increased during glacial periods. We compare the magnitudes of changes in the Southern Ocean and the tropics and suggest that Si escaping the glacial Southern Ocean must have had an alternate destination, possibly the continental margins. There is currently insufficient data to test this hypothesis, but the existence of this sink and its potential impact on glacial pCO2 remain interesting topics for future study.
  • Preprint
    The last reconnection of the Marmara Sea (Turkey) to the World Ocean : A paleoceanographic and paleoclimatic perspective
    ( 2008-07) McHugh, Cecilia M. G. ; Gurung, Damayanti ; Giosan, Liviu ; Ryan, William B. F. ; Mart, Yossi ; Sancar, Ummuhan ; Burckle, Lloyd H. ; Cagatay, M. Namik
    During the late glacial, marine isotope Stage 2, the Marmara Sea transformed into a brackish lake as global sea level fell below the sill in the Dardanelles Strait. A record of the basin’s reconnection to the global ocean is preserved in its sediments permitting the extraction of the paleoceanographic and paleoclimatic history of the region. The goal of this study is to develop a high-resolution record of the lacustrine to marine transition of Marmara Sea in order to reconstruct regional and global climatic events at 24 a millennial scale. For this purpose, we mapped the paleoshorelines of Marmara Sea along the northern, eastern, and southern shelves at Çekmece, Prince Islands, and Imrali, using data from multibeam bathymetry, high-resolution subbottom profiling (chirp) and ten sediment cores. Detailed sedimentologic, biostratigraphic (foraminifers, mollusk, diatoms), X-ray fluorescence geochemical scanning, and oxygen and carbon stable isotope analyses correlated to a calibrated radiocarbon chronology provided evidence for cold and dry conditions prior to 15 ka BP, warm conditions of the Bolling-Allerod from ~15 to 13 ka BP, a rapid marine incursion at 12 ka BP, still stand of Marmara Sea and sediment reworking of the paleoshorelines during the Younger Dryas at ~11.5 to 10.5 ka BP, and development of strong stratification and influx of nutrients as Black Sea waters spilled into Marmara Sea at 9.2 ka BP. Stable environmental conditions developed in Marmara Sea after 6.0 ka BP as sea-level reached its present shoreline and the basin floors filled with sediments achieving their present configuration.