Fung Inez Y.

No Thumbnail Available
Last Name
First Name
Inez Y.

Search Results

Now showing 1 - 10 of 10
  • Article
    Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks : results from an atmosphere-ocean general circulation model
    (Copernicus Publications on behalf of the European Geosciences Union, 2009-10-08) Thornton, Peter E. ; Doney, Scott C. ; Lindsay, Keith ; Moore, J. Keith ; Mahowald, Natalie M. ; Randerson, James T. ; Fung, Inez Y. ; Lamarque, J.-F. ; Feddema, J. J. ; Lee, Y.-H.
    Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO2 fertilization, and increased carbon uptake associated with warming of the climate system. The balance of these two opposing effects is to reduce the fraction of anthropogenic CO2 predicted to be sequestered in land ecosystems. The primary mechanism responsible for increased land carbon storage under radiatively forced climate change is shown to be fertilization of plant growth by increased mineralization of nitrogen directly associated with increased decomposition of soil organic matter under a warming climate, which in this particular model results in a negative gain for the climate-carbon feedback. Estimates for the land and ocean sink fractions of recent anthropogenic emissions are individually within the range of observational estimates, but the combined land plus ocean sink fractions produce an airborne fraction which is too high compared to observations. This bias is likely due in part to an underestimation of the ocean sink fraction. Our results show a significant growth in the airborne fraction of anthropogenic CO2 emissions over the coming century, attributable in part to a steady decline in the ocean sink fraction. Comparison to experimental studies on the fate of radio-labeled nitrogen tracers in temperate forests indicates that the model representation of competition between plants and microbes for new mineral nitrogen resources is reasonable. Our results suggest a weaker dependence of net land carbon flux on soil moisture changes in tropical regions, and a stronger positive growth response to warming in those regions, than predicted by a similar AOGCM implemented without land carbon-nitrogen interactions. We expect that the between-model uncertainty in predictions of future atmospheric CO2 concentration and associated anthropogenic climate change will be reduced as additional climate models introduce carbon-nitrogen cycle interactions in their land components.
  • Preprint
    Evolution of carbon sinks in a changing climate
    ( 2005-06-13) Fung, Inez Y. ; Doney, Scott C. ; Lindsay, Keith ; John, Jasmin G.
    Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research–Climate System Model 1 coupled carbon–climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain.
  • Article
    Climate-mediated changes to mixed-layer properties in the Southern Ocean : assessing the phytoplankton response
    (Copernicus Publications on behalf of the European Geosciences Union, 2008-05-19) Boyd, Philip W. ; Doney, Scott C. ; Strzepek, R. ; Dusenberry, Jeffrey A. ; Lindsay, Keith ; Fung, Inez Y.
    Concurrent changes in ocean chemical and physical properties influence phytoplankton dynamics via alterations in carbonate chemistry, nutrient and trace metal inventories and upper ocean light environment. Using a fully coupled, global carbon-climate model (Climate System Model 1.4-carbon), we quantify anthropogenic climate change relative to the background natural interannual variability for the Southern Ocean over the period 2000 and 2100. Model results are interpreted using our understanding of the environmental control of phytoplankton growth rates – leading to two major findings. Firstly, comparison with results from phytoplankton perturbation experiments, in which environmental properties have been altered for key species (e.g., bloom formers), indicates that the predicted rates of change in oceanic properties over the next few decades are too subtle to be represented experimentally at present. Secondly, the rate of secular climate change will not exceed background natural variability, on seasonal to interannual time-scales, for at least several decades – which may not provide the prevailing conditions of change, i.e. constancy, needed for phytoplankton adaptation. Taken together, the relatively subtle environmental changes, due to climate change, may result in adaptation by resident phytoplankton, but not for several decades due to the confounding effects of climate variability. This presents major challenges for the detection and attribution of climate change effects on Southern Ocean phytoplankton. We advocate the development of multi-faceted tests/metrics that will reflect the relative plasticity of different phytoplankton functional groups and/or species to respond to changing ocean conditions.
  • Article
    Impact of ocean carbon system variability on the detection of temporal increases in anthropogenic CO2
    (American Geophysical Union, 2008-03-19) Levine, Naomi M. ; Doney, Scott C. ; Wanninkhof, Rik ; Lindsay, Keith ; Fung, Inez Y.
    Estimates of temporal trends in oceanic anthropogenic carbon dioxide (CO2) rely on the ability of empirical methods to remove the large natural variability of the ocean carbon system. A coupled carbon-climate model is used to evaluate these empirical methods. Both the ΔC* and multiple linear regression (MLR) techniques reproduce the predicted increase in dissolved inorganic carbon for the majority of the ocean and have similar average percent errors for decadal differences (24.1% and 25.5%, respectively). However, this study identifies several regions where these methods may introduce errors. Of particular note are mode and deep water formation regions, where changes in air-sea disequilibrium and structure in the MLR residuals introduce errors. These results have significant implications for decadal repeat hydrography programs, indicating the need for subannual sampling in certain regions of the oceans in order to better constrain the natural variability in the system and to robustly estimate the intrusion of anthropogenic CO2.
  • Article
    Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron
    (American Geophysical Union, 2006-02-01) Lam, Phoebe J. ; Bishop, James K. B. ; Henning, Cara C. ; Marcus, Matthew A. ; Waychunas, Glenn A. ; Fung, Inez Y.
    Heightened biological activity was observed in February 1996 in the high-nutrient low-chlorophyll (HNLC) subarctic North Pacific Ocean, a region that is thought to be iron-limited. Here we provide evidence supporting the hypothesis that Ocean Station Papa (OSP) in the subarctic Pacific received a lateral supply of particulate iron from the continental margin off the Aleutian Islands in the winter, coincident with the observed biological bloom. Synchrotron X-ray analysis was used to describe the physical form, chemistry, and depth distributions of iron in size fractionated particulate matter samples. The analysis reveals that discrete micron-sized iron-rich hot spots are ubiquitous in the upper 200 m at OSP, more than 900 km from the closest coast. The specifics of the chemistry and depth profiles of the Fe hot spots trace them to the continental margins. We thus hypothesize that iron hot spots are a marker for the delivery of iron from the continental margin. We confirm the delivery of continental margin iron to the open ocean using an ocean general circulation model with an iron-like tracer source at the continental margin. We suggest that iron from the continental margin stimulated a wintertime phytoplankton bloom, partially relieving the HNLC condition.
  • Article
    Natural variability in a stable, 1000-yr global coupled climate-carbon cycle simulation
    (American Meteorological Society, 2006-07-01) Doney, Scott C. ; Lindsay, Keith ; Fung, Inez Y. ; John, Jasmin G.
    A new 3D global coupled carbon–climate model is presented in the framework of the Community Climate System Model (CSM-1.4). The biogeochemical module includes explicit land water–carbon coupling, dynamic carbon allocation to leaf, root, and wood, prognostic leaf phenology, multiple soil and detrital carbon pools, oceanic iron limitation, a full ocean iron cycle, and 3D atmospheric CO2 transport. A sequential spinup strategy is utilized to minimize the coupling shock and drifts in land and ocean carbon inventories. A stable, 1000-yr control simulation [global annual mean surface temperature ±0.10 K and atmospheric CO2 ± 1.2 ppm (1σ)] is presented with no flux adjustment in either physics or biogeochemistry. The control simulation compares reasonably well against observations for key annual mean and seasonal carbon cycle metrics; regional biases in coupled model physics, however, propagate clearly into biogeochemical error patterns. Simulated interannual-to-centennial variability in atmospheric CO2 is dominated by terrestrial carbon flux variability, ±0.69 Pg C yr−1 (1σ global net annual mean), which in turn reflects primarily regional changes in net primary production modulated by moisture stress. Power spectra of global CO2 fluxes are white on time scales beyond a few years, and thus most of the variance is concentrated at high frequencies (time scale <4 yr). Model variability in air–sea CO2 fluxes, ±0.10 Pg C yr−1 (1σ global annual mean), is generated by variability in sea surface temperature, wind speed, export production, and mixing/upwelling. At low frequencies (time scale >20 yr), global net ocean CO2 flux is strongly anticorrelated (0.7–0.95) with the net CO2 flux from land; the ocean tends to damp (20%–25%) slow variations in atmospheric CO2 generated by the terrestrial biosphere. The intrinsic, unforced natural variability in land and ocean carbon storage is the “noise” that complicates the detection and mechanistic attribution of contemporary anthropogenic carbon sinks.
  • Article
    Extending the record of photosynthetic activity in the eastern United States into the presatellite period using surface diurnal temperature range
    (American Geophysical Union, 2005-04-26) Bonfils, Celine ; Angert, Alon ; Henning, Cara C. ; Biraud, Sebastien ; Doney, Scott C. ; Fung, Inez Y.
    In this study, we demonstrate that mid-latitude surface measurements of diurnal temperature range (DTR) can be used to reconstruct decadal variability of regional-scale terrestrial photosynthetic activity 1) during and prior to the period with satellite retrievals of land greenness and 2) without the need for moisture data. While the two relative maxima present in the seasonal evolution of DTR can determine the beginning and the end of the growing season, the summertime average DTR can be used as a proxy of summertime terrestrial photosynthesis. In a case study in the eastern United States (1966–1997), the DTR reconstructions indicate significant natural decadal variability in photosynthetic activity, but no secular, long-term trend. The summertime photosynthesis was found to be controlled primarily by moisture availability. Also, contrary to existing model parameterizations, the timing of spring onset was found to depend on both temperature and moisture.
  • Article
    On the detection of summertime terrestrial photosynthetic variability from its atmospheric signature
    (American Geophysical Union, 2004-05-11) Bonfils, Celine ; Fung, Inez Y. ; Doney, Scott C. ; John, Jasmin G.
    We identify the climatic signatures of the summertime terrestrial photosynthesis variability using a long simulation of pre-industrial climate performed with the NCAR coupled global climate-carbon model. Since plant physiology controls simultaneously CO2 uptake and surface fluxes of water, changes in photosynthesis are accompanied by changes in numerous climate variables: daily maximum temperature, diurnal temperature range, Bowen ratio, canopy temperature and tropospheric lapse rate. Results show that these climate variables may be used as powerful proxies for photosynthesis activity for subtropical vegetation and for tropical vegetation when photosynthetic variability may be limited by water availability.
  • Article
    Precision requirements for space-based XCO2 data
    (American Geophysical Union, 2007-05-26) Miller, C. E. ; Crisp, D. ; DeCola, P. L. ; Olsen, S. C. ; Randerson, James T. ; Michalak, Anna M. ; Alkhaled, A. ; Rayner, Peter ; Jacob, Daniel J. ; Suntharalingam, Parvadha ; Jones, D. B. A. ; Denning, A. S. ; Nicholls, M. E. ; Doney, Scott C. ; Pawson, S. ; Boesch, H. ; Connor, B. J. ; Fung, Inez Y. ; O'Brien, D. ; Salawitch, R. J. ; Sander, S. P. ; Sen, B. ; Tans, Pieter P. ; Toon, G. C. ; Wennberg, Paul O. ; Wofsy, Steven C. ; Yung, Y. L. ; Law, R. M.
    Precision requirements are determined for space-based column-averaged CO2 dry air mole fraction (XCO2) data. These requirements result from an assessment of spatial and temporal gradients in XCO2, the relationship between XCO2 precision and surface CO2 flux uncertainties inferred from inversions of the XCO2 data, and the effects of XCO2 biases on the fidelity of CO2 flux inversions. Observational system simulation experiments and synthesis inversion modeling demonstrate that the Orbiting Carbon Observatory mission design and sampling strategy provide the means to achieve these XCO2 data precision requirements.
  • Article
    Climate-carbon cycle feedback analysis : results from the C4MIP model intercomparison
    (American Meteorological Society, 2006-07-15) Friedlingstein, Pierre ; Cox, P. ; Betts, Richard A. ; Bopp, Laurent ; von Bloh, W. ; Brovkin, V. ; Cadule, P. ; Doney, Scott C. ; Eby, Michael ; Fung, Inez Y. ; Bala, G. ; John, Jasmin G. ; Jones, C. D. ; Joos, Fortunat ; Kato, T. ; Kawamiya, M. ; Knorr, W. ; Lindsay, Keith ; Matthews, H. D. ; Raddatz, T. ; Rayner, Peter ; Reick, C. ; Roeckner, E. ; Schnitzler, K.-G. ; Schnur, R. ; Strassmann, K. ; Weaver, Andrew J. ; Yoshikawa, C. ; Zeng, Ning
    Eleven coupled climate–carbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 anthropogenic emissions of CO2 for the 1850–2100 time period. For each model, two simulations were performed in order to isolate the impact of climate change on the land and ocean carbon cycle, and therefore the climate feedback on the atmospheric CO2 concentration growth rate. There was unanimous agreement among the models that future climate change will reduce the efficiency of the earth system to absorb the anthropogenic carbon perturbation. A larger fraction of anthropogenic CO2 will stay airborne if climate change is accounted for. By the end of the twenty-first century, this additional CO2 varied between 20 and 200 ppm for the two extreme models, the majority of the models lying between 50 and 100 ppm. The higher CO2 levels led to an additional climate warming ranging between 0.1° and 1.5°C. All models simulated a negative sensitivity for both the land and the ocean carbon cycle to future climate. However, there was still a large uncertainty on the magnitude of these sensitivities. Eight models attributed most of the changes to the land, while three attributed it to the ocean. Also, a majority of the models located the reduction of land carbon uptake in the Tropics. However, the attribution of the land sensitivity to changes in net primary productivity versus changes in respiration is still subject to debate; no consensus emerged among the models.