Wakefield Ewan D.

No Thumbnail Available
Last Name
First Name
Ewan D.

Search Results

Now showing 1 - 2 of 2
  • Article
    Flight speed and performance of the wandering albatross with respect to wind
    (BMC, 2018-03-07) Richardson, Philip L. ; Wakefield, Ewan D. ; Phillips, Richard A.
    Albatrosses and other large seabirds use dynamic soaring to gain sufficient energy from the wind to travel large distances rapidly and with little apparent effort. The recent development of miniature bird-borne tracking devices now makes it possible to explore the physical and biological implications of this means of locomotion in detail. Here we use GPS tracking and concurrent reanalyzed wind speed data to model the flight performance of wandering albatrosses Diomedea exulans soaring over the Southern Ocean. We investigate the extent to which flight speed and performance of albatrosses is facilitated or constrained by wind conditions encountered during foraging trips.
  • Article
    Observations and models of across-wind flight speed of the wandering albatross
    (The Royal Society, 2022-11-30) Richardson, Philip L. ; Wakefield, Ewan D.
    Wandering albatrosses exploit wind shear by dynamic soaring (DS), enabling rapid, efficient, long-range flight. We compared the ability of a theoretical nonlinear DS model and a linear empirical model to explain the observed variation of mean across-wind airspeeds of GPS-tracked wandering albatrosses. Assuming a flight trajectory of linked, 137° turns, a DS cycle of 10 s and a cruise airspeed of 16 m s−1, the theoretical model predicted that the minimum wind speed necessary to support DS is greater than 3 m s−1. Despite this, tracked albatrosses were observed in flight at wind speeds as low as 2 m s−1. We hypothesize at these very low wind speeds, wandering albatrosses fly by obtaining additional energy from updrafts over water waves. In fast winds (greater than 8 m s−1), assuming the same 10 s cycle period and a turn angle (TA) of 90°, the DS model predicts mean across-wind airspeeds of up to around 50 m s−1. In contrast, the maximum observed across-wind mean airspeed of our tracked albatrosses reached an asymptote at approximately 20 m s−1. We hypothesize that this is due to birds actively limiting airspeed by making fine-scale adjustments to TAs and soaring heights in order to limit aerodynamic force on their wings.