Chaudhuri
Dipanjan
Chaudhuri
Dipanjan
No Thumbnail Available
3 results
Search Results
Now showing
1 - 3 of 3
-
ArticleWhat controls seasonal evolution of sea surface temperature in the Bay of Bengal? Mixed layer heat budget analysis using moored buoy observations along 90°E(The Oceanography Society, 2016-06) Thangaprakash, V. P. ; Girishkumar, M. S. ; Suprit, K. ; Kumar, N. Suresh ; Chaudhuri, Dipanjan ; Dinesh, K. ; Kumar, Ashok ; Shivaprasad, S. ; Ravichandran, M. ; Farrar, J. Thomas ; Sundar, R. ; Weller, Robert A.Continuous time-series measurements of near surface meteorological and ocean variables obtained from Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) moorings at 15°N, 90°E; 12°N, 90°E; and 8°N, 90°E and an Ocean Moored buoy Network for Northern Indian Ocean (OMNI) mooring at 18°N, 90°E are used to improve understanding of air-sea interaction processes and mixed layer (ML) temperature variability in the Bay of Bengal (BoB) at seasonal time scales. Consistent with earlier studies, this analysis reveals that net surface heat flux primarily controls the ML heat balance. The penetrative component of shortwave radiation plays a crucial role in the ML heat budget in the BoB, especially during the spring warming phase when the ML is thin. During winter and summer, vertical processes contribute significantly to the ML heat budget. During winter, the presence of a strong barrier layer and a temperature inversion (warmer water below the ML) leads to warming of the ML by entrainment of warm subsurface water into the ML. During summer, the barrier layer is relatively weak, and the ML is warmer than the underlying water (i.e., no temperature inversion); hence, the entrainment cools the mixed layer. The contribution of horizontal advection to the ML heat budget is greatest during winter when it serves to warm the upper ocean. In general, the residual term in the ML heat budget equation is quite large during the ML cooling phase compared to the warming phase when the contribution from vertical heat flux is small.
-
ArticleAir-sea interaction in the Bay of Bengal(The Oceanography Society, 2016-06) Weller, Robert A. ; Farrar, J. Thomas ; Buckley, Jared ; Mathew, Simi ; Venkatesan, Ramasamy ; Lekha, J. Sree ; Chaudhuri, Dipanjan ; Kumar, N. Suresh ; Kumar, B. PraveenRecent observations of surface meteorology and exchanges of heat, freshwater, and momentum between the ocean and the atmosphere in the Bay of Bengal are presented. These observations characterize air-sea interaction at 18°N, 89.5°E from December 2014 to January 2016 and also at other locations in the northern Bay of Bengal. Monsoonal variability dominated the records, with winds to the northeast in summer and to the southwest in winter. This variability included a strong annual cycle in the atmospheric forcing of the ocean in the Bay of Bengal, with the winter monsoon marked by sustained ocean heat loss resulting in ocean cooling, and the summer monsoon marked by strong storm events with dark skies and rain that also resulted in ocean cooling. The spring intermonsoon was a period of clear skies and low winds, when strong solar heating and weak wind-driven mixing led to ocean warming. The fall intermonsoon was a transitional period, with some storm events but also with enough clear skies and sunlight that ocean surface temperature rose again. Mooring and shipboard observations are used to examine the ability of model-based surface fluxes to represent air-sea interaction in the Bay of Bengal; the model-based fluxes have significant errors. The surface forcing observed at 18°N is also used together with a one-dimensional ocean model to illustrate the potential for local air-sea interaction to drive upper-ocean variability in the Bay of Bengal.
-
ArticleNear-inertial response of a salinity-stratified ocean(American Meteorological Society, 2024-08-19) Chaudhuri, Dipanjan ; Sengupta, Debasis ; D'Asaro, Eric A. ; Farrar, J. Thomas ; Mathur, Manikandan ; Ranganathan, SundarWe study the near-inertial response of the salinity-stratified north Bay of Bengal to monsoonal wind forcing using 6 years of hourly observations from four moorings. The mean annual energy input from surface winds to near-inertial mixed layer currents is 10–20 kJ m−2, occurring mainly in distinct synoptic “events” from April–September. A total of fifteen events are analyzed: Seven when the ocean is capped by a thin layer of low-salinity river water (fresh) and eight when it is not (salty). The average near-inertial energy input from winds is 40% higher in the fresh cases than in the salty cases. During the fresh events, 1) mixed layer near-inertial motions decay about two times faster and 2) near-inertial kinetic energy below the mixed layer is reduced by at least a factor of three relative to the salty cases. The near-inertial horizontal wavelength was measured for one fresh and one salty event; the fresh was about three times shorter initially. A linear model of near-inertial wave propagation tuned to these data reproduces 2); the thin (10 m) mixed layers during the fresh events excite high modes, which propagate more slowly than the low modes excited by the thicker (40 m) mixed layers in the salty events. The model does not reproduce 1); the rapid decay of the mixed layer inertial motions in the fresh events is not explained by the linear wave propagation at the resolved scales; a different and currently unknown set of processes is likely responsible.