Fallon Andrew R.

No Thumbnail Available
Last Name
First Name
Andrew R.

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Adapting without retreating : responses to shoreline change on an inlet-associated coastal beach
    ( 2017-06-16) Fallon, Andrew R. ; Hoagland, Porter ; Jin, Di ; Phalen, William G. ; Fitzsimons, G. Gray ; Hein, Christopher J.
    Coastal barrier systems around the world are experiencing higher rates of flooding and shoreline erosion. Property owners on barriers have made significant financial investments in physical protections that shield their nearby properties from these hazards, constituting a type of adaptation to shoreline change. Factors that contribute to adaptation on Plum Island, a developed beach and dune system on the North Shore of Massachusetts, are investigated here. Plum Island experiences patterns of shoreline change that may be representative of many inlet-associated beaches, encompassing an equivocal and dynamically shifting mix of erosion and accretion. In the face of episodic floods and fleeting erosive events, and driven by a combination of strong northeast storms and cycles of erosion and accretion, the value of the average Plum Island residence increases by 34% for properties on the oceanfront where protection comprises a publicly constructed soft structure. Even in the face of state policies that ostensibly discourage physical protection as a means of adaptation, coastal communities face significant political and financial pressures to maintain existing protective structures or to allow contiguous groups of property owners to build new ones through collective action. These factors mitigate against adapting to shoreline change by retreating from the coast, thereby potentially increasing the adverse effects of coastal hazards.
  • Article
    Shoreline dynamics along a developed river mouth barrier island: Multi-decadal cycles of erosion and event-driven mitigation
    (Frontiers Media, 2019-05-14) Hein, Christopher J. ; Fallon, Andrew R. ; Rosen, Peter ; Hoagland, Porter ; Georgiou, Ioannis Y. ; FitzGerald, Duncan M. ; Morris, Michael ; Baker, Sarah ; Marino, George B. ; Fitzsimons, Gregory
    Human modifications in response to erosion have altered the natural transport of sediment to and across the coastal zone, thereby potentially exacerbating the impacts of future erosive events. Using a combination of historical shoreline-change mapping, sediment sampling, three-dimensional beach surveys, and hydrodynamic modeling of nearshore and inlet processes, this study explored the feedbacks between periodic coastal erosion patterns and associated mitigation responses, focusing on the open-ocean and inner-inlet beaches of Plum Island and the Merrimack River Inlet, Massachusetts, United States. Installation of river-mouth jetties in the early 20th century stabilized the inlet, allowing residential development in northern Plum Island, but triggering successive, multi-decadal cycles of alternating beach erosion and accretion along the inner-inlet and oceanfront beaches. At a finer spatial scale, the formation and southerly migration of an erosion “hotspot” (a setback of the high-water line by ∼100 m) occurs regularly (every 25–40 years) in response to the refraction of northeast storm waves around the ebb-tidal delta. Growth of the delta progressively shifts the focus of storm wave energy further down-shore, replenishing updrift segments with sand through the detachment, landward migration, and shoreline-welding of swash bars. Monitoring recent hotspot migration (2008–2014) demonstrates erosion (>30,000 m3 of sand) along a 350-m section of beach in 6 months, followed by recovery, as the hotspot migrated further south. In response to these erosion cycles, local residents and governmental agencies attempted to protect shorefront properties with a variety of soft and hard structures. The latter have provided protection to some homes, but enhanced erosion elsewhere. Although the local community is in broad agreement about the need to plan for long-term coastal changes associated with sea-level rise and increased storminess, real-time responses have involved reactions mainly to short-term (<5 years) erosion threats. A collective consensus for sustainable management of this area is lacking and the development of a longer-term adaptive perspective needed for proper planning has been elusive. With a deepening understanding of multi-decadal coastal dynamics, including a characterization of the relative contributions of both nature and humans, we can be more optimistic that adaptations beyond mere reactions to shoreline change are achievable.