Abram
Nerilie J.
Abram
Nerilie J.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleTropical sea surface temperatures for the past four centuries reconstructed from coral archives(John Wiley & Sons, 2015-03-18) Tierney, Jessica E. ; Abram, Nerilie J. ; Anchukaitis, Kevin J. ; Evans, Michael N. ; Giry, Cyril ; Kilbourne, K. Halimeda ; Saenger, Casey P. ; Wu, Henry C. ; Zinke, JensMost annually resolved climate reconstructions of the Common Era are based on terrestrial data, making it a challenge to independently assess how recent climate changes have affected the oceans. Here as part of the Past Global Changes Ocean2K project, we present four regionally calibrated and validated reconstructions of sea surface temperatures in the tropics, based on 57 published and publicly archived marine paleoclimate data sets derived exclusively from tropical coral archives. Validation exercises suggest that our reconstructions are interpretable for much of the past 400 years, depending on the availability of paleoclimate data within, and the reconstruction validation statistics for, each target region. Analysis of the trends in the data suggests that the Indian, western Pacific, and western Atlantic Ocean regions were cooling until modern warming began around the 1830s. The early 1800s were an exceptionally cool period in the Indo-Pacific region, likely due to multiple large tropical volcanic eruptions occurring in the early nineteenth century. Decadal-scale variability is a quasi-persistent feature of all basins. Twentieth century warming associated with greenhouse gas emissions is apparent in the Indian, West Pacific, and western Atlantic Oceans, but we find no evidence that either natural or anthropogenic forcings have altered El Niño–Southern Oscillation-related variance in tropical sea surface temperatures. Our marine-based regional paleoclimate reconstructions serve as benchmarks against which terrestrial reconstructions as well as climate model simulations can be compared and as a basis for studying the processes by which the tropical oceans mediate climate variability and change.
-
PreprintHeat and freshwater changes in the Indian Ocean region(Nature Research, 2021-07-20) Ummenhofer, Caroline C. ; Murty, Sujata A. ; Sprintall, Janet ; Lee, Tong ; Abram, Nerilie J.Across the Indo-Pacific region, rapid increases in surface temperatures, ocean heat content and concomitant hydrological changes have implications for sea level rise, ocean circulation and regional freshwater availability. In this Review, we synthesize evidence from multiple data sources to elucidate whether the observed heat and freshwater changes in the Indian Ocean represent an intensification of the hydrological cycle, as expected in a warming world. At the basin scale, twentieth century warming trends can be unequivocally attributed to human-induced climate change. Changes since 1980, however, appear dominated by multi-decadal variability associated with the Interdecadal Pacific oscillation, manifested as shifts in the Walker circulation and a corresponding reorganization of the Indo-Pacific heat and freshwater balance. Such variability, coupled with regional-scale trends, a short observational record and climate model uncertainties, makes it difficult to assess whether contemporary changes represent an anthropogenically forced transformation of the hydrological cycle. Future work must, therefore, focus on maintaining and expanding observing systems of remotely sensed and in situ observations, as well as extending and integrating coral proxy networks. Improved climate model simulations of the Maritime Continent region and its intricate exchange between the Pacific and Indian oceans are further necessary to quantify and attribute Indo-Pacific hydrological changes.