Kosnyrev V. K.

No Thumbnail Available
Last Name
First Name
V. K.

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Active positioning of vent larvae at a mid-ocean ridge
    ( 2013-03) Mullineaux, Lauren S. ; McGillicuddy, Dennis J. ; Mills, Susan W. ; Kosnyrev, V. K. ; Thurnherr, Andreas M. ; Ledwell, James R. ; Lavelle, J. William
    The vertical position of larvae of vent species above a mid-ocean ridge potentially has a strong effect on their dispersal. Larvae may be advected upward in the buoyant vent plume, or move as a consequence of their buoyancy or active swimming. Alternatively, they may be retained near bottom by the topography of the axial trough, or by downward swimming. At vents near 9°50’N on the axis of the East Pacific Rise, evidence for active larval positioning was detected in a comparison between field observations of larvae in the plankton in 2006 and 2007 and distributions of non-swimming larvae in a two-dimensional bio-physical model. In the field, few vent larvae were collected at the level of the neutrally buoyant plume (~75 m above bottom); their relative abundances at that height were much lower than those of simulated larvae from a near-bottom release in the model. This discrepancy was observed for many vent species, particularly gastropods, suggesting that they may actively remain near bottom by sinking or swimming downward. Near the seafloor, larval abundance decreased from the ridge axis to 1000 m off axis much more strongly in the observations than in the simulations, again pointing to behavior as a potential regulator of larval transport. We suspect that transport off axis was reduced by downward-moving behavior, which positioned larvae into locations where they were isolated from cross-ridge currents by seafloor topography, such as the walls of the axial valley – which are not resolved in the model. Cross-ridge gradients in larval abundance varied between gastropods and polychaetes, indicating that behavior may vary between taxonomic groups, and possibly between species. These results suggest that behaviorally mediated retention of vent larvae may be common, even for species that have a long planktonic larval duration and are capable of long-distance dispersal.
  • Preprint
    Larval dispersion along an axially symmetric mid-ocean ridge
    ( 2009-12-22) McGillicuddy, Dennis J. ; Lavelle, J. William ; Thurnherr, Andreas M. ; Kosnyrev, V. K. ; Mullineaux, Lauren S.
    We investigated planktonic larval transport processes along an axially symmetric mid-ocean ridge with characteristics similar to that of the East Pacific Rise (EPR) segment at 9-10°N. The hydrodynamic basis for this study is a primitive equation model implemented in two dimensions (depth and across-ridge), forced at the open boundaries to provide suitably realistic simulation of currents observed on the EPR ridge crest from May to November 1999. Three-dimensional trajectories of numerical larvae are computed assuming homogeneity in currents in the along-ridge direction. Larval dispersal fluctuates significantly in time. Transport distance decreases systematically with height above the bottom where numerical larvae are less subject to strong currents along the flanks of the ridge. The probability that the simulated larvae will be located near the ridge crest at settlement depends strongly on their behavioral characteristics (vertical position in the water column during the larval stage) and the length of their precompetency period.