Bradley
Albert M.
Bradley
Albert M.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleMid-ocean ridge exploration with an autonomous underwater vehicle(Oceanography Society, 2007-12) Yoerger, Dana R. ; Bradley, Albert M. ; Jakuba, Michael V. ; Tivey, Maurice A. ; German, Christopher R. ; Shank, Timothy M. ; Embley, Robert W.Human-occupied submersibles, towed vehicles, and tethered remotely operated vehicles (ROVs) have traditionally been used to study the deep seafloor. In recent years, however, autonomous underwater vehicles (AUVs) have begun to replace these other vehicles for mapping and survey missions. AUVs complement the capabilities of these pre-existing systems, offering superior mapping capabilities, improved logistics, and better utilization of the surface support vessel by allowing other tasks such as submersible operations, ROV work, CTD stations, or multibeam surveys to be performed while the AUV does its work. AUVs are particularly well suited to systematic preplanned surveys using sonars, in situ chemical sensors, and cameras in the rugged deep-sea terrain that has been the focus of numerous scientific expeditions (e.g., those to mid-ocean ridges and ocean margin settings). The Autonomous Benthic Explorer (ABE) is an example of an AUV that has been used for over 20 cruises sponsored by the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA) Office of Ocean Exploration (OE), and international and private sources. This paper summarizes NOAA OE-sponsored cruises made to date using ABE.
-
ArticleAutonomous and remotely operated vehicle technology for hydrothermal vent discovery, exploration, and sampling(Oceanography Society, 2007-03) Yoerger, Dana R. ; Bradley, Albert M. ; Jakuba, Michael V. ; German, Christopher R. ; Shank, Timothy M. ; Tivey, Maurice A.Autonomous and remotely operated underwater vehicles play complementary roles in the discovery, exploration, and detailed study of hydrothermal vents. Beginning with clues provided by towed or lowered instruments, autonomous underwater vehicles (AUVs) can localize and make preliminary photographic surveys of vent fields. In addition to finding and photographing such sites, AUVs excel at providing regional context through fine-scale bathymetric and magnetic field mapping. Remotely operated vehicles (ROVs) enable close-up inspection, photomosaicking, and tasks involving manipulation of samples and instruments. Increasingly, ROVs are used to conduct in situ seafloor experiments. ROVs can also be used for fine-scale bathymetric mapping with excellent results, although AUVs are usually more efficient in such tasks.