Crook Robyn J.

No Thumbnail Available
Last Name
Crook
First Name
Robyn J.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Squid have nociceptors that display widespread long-term sensitization and spontaneous activity after bodily injury
    (Society for Neuroscience, 2013-06-12) Crook, Robyn J. ; Hanlon, Roger T. ; Walters, Edgar T.
    Bodily injury in mammals often produces persistent pain that is driven at least in part by long-lasting sensitization and spontaneous activity (SA) in peripheral branches of primary nociceptors near sites of injury. While nociceptors have been described in lower vertebrates and invertebrates, outside of mammals there is limited evidence for peripheral sensitization of primary afferent neurons, and there are no reports of persistent SA being induced in primary afferents by noxious stimulation. Cephalopod molluscs are the most neurally and behaviorally complex invertebrates, with brains rivaling those of some vertebrates in size and complexity. This has fostered the opinion that cephalopods may experience pain, leading some governments to include cephalopods under animal welfare laws. It is not known, however, if cephalopods possess nociceptors, or whether their somatic sensory neurons exhibit nociceptive sensitization. We demonstrate that squid possess nociceptors that selectively encode noxious mechanical but not heat stimuli, and that show long-lasting peripheral sensitization to mechanical stimuli after minor injury to the body. As in mammals, injury in squid can cause persistent SA in peripheral afferents. Unlike mammals, the afferent sensitization and SA are almost as prominent on the contralateral side of the body as they are near an injury. Thus, while squid exhibit peripheral alterations in afferent neurons similar to those that drive persistent pain in mammals, robust changes far from sites of injury in squid suggest that persistently enhanced afferent activity provides much less information about the location of an injury in cephalopods than it does in mammals.
  • Dataset
    Neural control of tuneable skin iridescence in squid
    ( 2012-07-25) Wardill, Trevor J. ; Gonzalez-Bellido, Paloma T. ; Crook, Robyn J. ; Hanlon, Roger T.
    Fast dynamic control of skin coloration is rare in the animal kingdom, whether it be pigmentary or structural. Iridescent structural coloration results when nanoscale structures disrupt incident light and selectively reflect specific colours. Unlike animals with fixed iridescent coloration (e.g. butterflies), squid iridophores (i.e. aggregations of iridescent cells in the skin), produce dynamically tuneable structural coloration, as exogenous application of acetylcholine (ACh) changes the colour and brightness output. Previous efforts to stimulate iridophores neurally or to identify the source of endogenous ACh were unsuccessful, leaving researchers to question the activation mechanism. We developed a novel neurophysiological preparation in the squid Doryteuthis pealeii and demonstrated that electrical stimulation of neurons in the skin shifts the spectral peak of the reflected light to shorter wavelengths (>145 nm) and increases the peak reflectance (>245 %) of innervated iridophores. We show ACh is released within the iridophore layer and that extensive nerve branching is seen within the iridophore. The dynamic colour shift is significantly faster (17 s) than the peak reflectance increase (32 s) revealing two distinct mechanisms. Responses from a structurally altered preparation indicate that the reflectin protein condensation mechanism explains peak reflectance change, while an undiscovered mechanism causes the fast colour shift.