Goodman Jason C.

No Thumbnail Available
Last Name
First Name
Jason C.

Search Results

Now showing 1 - 2 of 2
  • Article
    Hydrothermal plume dynamics on Europa : implications for chaos formation
    (American Geophysical Union, 2004-03-20) Goodman, Jason C. ; Collins, Geoffrey C. ; Marshall, John C. ; Pierrehumbert, Raymond T.
    Hydrothermal plumes may be responsible for transmitting radiogenic or tidally generated heat from Europa's rocky interior through a liquid ocean to the base of its ice shell. This process has been implicated in the formation of chaos regions and lenticulae by melting or exciting convection in the ice layer. In contrast to earlier work, we argue that Europa's ocean should be treated as an unstratified fluid. We have adapted and expanded upon existing work describing buoyant plumes in a rotating, unstratified environment. We discuss the scaling laws governing the flow and geometry of plumes on Europa and perform a laboratory experiment to obtain scaling constants and to visualize plume behavior in a Europa-like parameter regime. We predict that hydrothermal plumes on Europa are of a lateral scale (at least 25–50 km) comparable to large chaos regions; they are too broad to be responsible for the formation of individual lenticulae. Plume heat fluxes (0.1–10 W/m2) are too weak to allow complete melt-through of the ice layer. Current speeds in the plume (3–8 mm/s) are much slower than indicated by previous studies. The observed movement of ice blocks in the Conamara Chaos region is unlikely to be driven by such weak flow.
  • Preprint
    Enceladus' south polar sea
    ( 2007-01-23) Collins, Geoffrey C. ; Goodman, Jason C.
    Recent observations of the south pole of Saturn’s moon Enceladus by the Cassini spacecraft have revealed an active world, powered by internal heat. In this paper, we propose that localized subsurface melting on Enceladus has produced an internal south polar sea. Evidence for this localized sea comes from the shape of Enceladus, which does not match a differentiated body at its current orbital position. We show that melting induced by the observed heat flow at the south pole produces a large enough pit to match the shape of Enceladus with a differentiated rock and ice interior. Numerical modeling of melting and ice flow shows that the sea produced beneath the south pole is stable against inflow of ductile ice from its surroundings for the duration of the heating. The shape modification due to melting also produces a negative degree-two gravity anomaly, which can reorient the spin axis of Enceladus in order to place the sea at the pole.