Martineau Patrick

No Thumbnail Available
Last Name
Martineau
First Name
Patrick
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Oceanic moisture sources contributing to wintertime Euro-Atlantic blocking
    (Copernicus Publications, 2021-08-31) Yamamoto, Ayako ; Nonaka, Masami ; Martineau, Patrick ; Yamazaki, Akira ; Kwon, Young-Oh ; Nakamura, Hisashi ; Taguchi, Bunmei
    Although conventionally attributed to dry dynamics, increasing evidence points to a key role of moist dynamics in the formation and maintenance of blocking events. The source of moisture crucial for these processes, however, remains elusive. In this study, we identify the moisture sources responsible for latent heating associated with the wintertime Euro-Atlantic blocking events detected over 31 years (1979–2010). To this end, we track atmospheric particles backward in time from the blocking centres for a period of 10 d using an offline Lagrangian dispersion model applied to atmospheric reanalysis data. The analysis reveals that 28 %–55 % of particles gain heat and moisture from the ocean over the course of 10 d, with higher percentages for the lower altitudes from which particles are released. Via large-scale ascent, these moist particles transport low-potential-vorticity (PV) air of low-altitude, low-latitude origins into the upper troposphere, where the amplitude of blocking is the most prominent, in agreement with previous studies. The PV of these moist particles remains significantly lower compared to their dry counterparts throughout the course of 10 d, preferentially constituting blocking cores. Further analysis reveals that approximately two-thirds of the moist particles source their moisture locally from the Atlantic, while the remaining one-third of moist particles source it from the Pacific. There is also a small fraction of moist particles that take up moisture from both the Pacific and Atlantic basins, which undergo a large-scale uplift over the Atlantic using moisture picked up over both basins. The Gulf Stream and Kuroshio and their extensions as well as the eastern Pacific northeast of Hawaii not only provide heat and moisture to moist particles but also act as “springboards” for their large-scale, cross-isentropic ascent, where its extent strongly depends on the humidity content at the time of the ascent. While the particles of Atlantic origin swiftly ascend just before their arrival at blocking, those of Pacific origin begin their ascent a few days earlier, after which they carry low-PV air in the upper troposphere while undergoing radiative cooling just as dry particles. A previous study identified a blocking maintenance mechanism, whereby low-PV air is selectively absorbed into blocking systems to prolong blocking lifetime. As they used an isentropic trajectory analysis, this mechanism was regarded as a dry process. We found that these moist particles that are fuelled over the Pacific can also act to maintain blocks in the same manner, revealing that what appears to be a blocking maintenance mechanism governed by dry dynamics alone can, in fact, be of moist origin.
  • Article
    Basin-dependent response of Northern Hemisphere winter blocking frequency to CO2 removal
    (Nature Research, 2024-05-23) Hwang, Jaeyoung ; Son, Seok-Woo ; Martineau, Patrick ; Sung, Mi-Kyung ; Barriopedro, David ; An, Soon-Il ; Yeh, Sang-Wook ; Min, Seung-Ki ; Kug, Jong-Seong ; Shin, Jongsoo
    Atmospheric blocking has been identified as one of the key elements of the extratropical atmospheric variabilities, controlling extreme weather events in mid-latitudes. Future projections indicate that Northern Hemisphere winter blocking frequency may decrease as CO2 concentrations increase. Here, we show that such changes may not be reversed when CO2 concentrations return to the current levels. Blocking frequency instead exhibits basin-dependent changes in response to CO2 removal. While the North Atlantic blocking frequency recovers gradually from the CO2-induced eastward shift, the North Pacific blocking frequency under the CO2 removal remains lower than its initial state. These basin-dependent blocking frequency changes result from background flow changes and their interactions with high-frequency eddies. Both high-frequency eddy and background flow changes determine North Atlantic blocking changes, whereas high-frequency eddy changes dominate the slow recovery of North Pacific blocking. Our results indicate that blocking-related extreme events in the Northern Hemisphere winter may not monotonically respond to CO2 removal.