Chen Dake

No Thumbnail Available
Last Name
Chen
First Name
Dake
ORCID

Search Results

Now showing 1 - 5 of 5
  • Article
    Overview of the MOSAiC expedition: physical oceanography
    (University of California Press, 2022-02-07) Rabe, Benjamin ; Heuzé, Céline ; Regnery, Julia ; Aksenov, Yevgeny ; Allerholt, Jacob ; Athanase, Marylou ; Bai, Youcheng ; Basque, Chris R. ; Bauch, Dorothea ; Baumann, Till M. ; Chen, Dake ; Cole, Sylvia T. ; Craw, Lisa ; Davies, Andrew ; Damm, Ellen ; Dethloff, Klaus ; Divine, Dmitry V. ; Doglioni, Francesca ; Ebert, Falk ; Fang, Ying-Chih ; Fer, Ilker ; Fong, Allison A. ; Gradinger, Rolf ; Granskog, Mats A. ; Graupner, Rainer ; Haas, Christian ; He, Hailun ; Hoppmann, Mario ; Janout, Markus A. ; Kadko, David ; Kanzow, Torsten C. ; Karam, Salar ; Kawaguchi, Yusuke ; Koenig, Zoe ; Kong, Bin ; Krishfield, Richard A. ; Krumpen, Thomas ; Kuhlmey, David ; Kuznetsov, Ivan ; Lan, Musheng ; Laukert, Georgi ; Lei, Ruibo ; Li, Tao ; Torres-Valdes, Sinhue ; Lin, Lina ; Lin, Long ; Liu, Hailong ; Liu, Na ; Loose, Brice ; Ma, Xiaobing ; McKay, Rosalie ; Mallet, Maria ; Mallett, Robbie ; Maslowski, Wieslaw ; Mertens, Christian ; Mohrholz, Volker ; Muilwijk, Morven ; Nicolaus, Marcel ; O’Brien, Jeffrey K. ; Perovich, Donald K. ; Ren, Jian ; Rex, Markus ; Ribeiro, Natalia ; Rinke, Annette ; Schaffer, Janin ; Schuffenhauer, Ingo ; Schulz, Kirstin ; Shupe, Matthew ; Shaw, William J. ; Sokolov, Vladimir T. ; Sommerfeld, Anja ; Spreen, Gunnar ; Stanton, Timothy P. ; Stephens, Mark ; Su, Jie ; Sukhikh, Natalia ; Sundfjord, Arild ; Thomisch, Karolin ; Tippenhauer, Sandra ; Toole, John M. ; Vredenborg, Myriel ; Walter, Maren ; Wang, Hangzhou ; Wang, Lei ; Wang, Yuntao ; Wendisch, Manfred ; Zhao, Jinping ; Zhou, Meng ; Zhu, Jialiang
    Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean.
  • Article
    Ocean climate observing requirements in support of climate research and climate information
    (Frontiers Media, 2019-07-31) Stammer, Detlef ; Bracco, Annalisa ; AchutaRao, Krishna ; Beal, Lisa M. ; Bindoff, Nathaniel L. ; Braconnot, Pascale ; Cai, Wenju ; Chen, Dake ; Collins, Matthew ; Danabasoglu, Gokhan ; Dewitte, Boris ; Farneti, Riccardo ; Fox-Kemper, Baylor ; Fyfe, John ; Griffies, Stephen M. ; Jayne, Steven R. ; Lazar, Alban ; Lengaigne, Matthieu ; Lin, Xiaopei ; Marsland, Simon ; Minobe, Shoshiro ; Monteiro, Pedro M. S. ; Robinson, Walter ; Roxy, Mathew Koll ; Rykaczewski, Ryan R. ; Speich, Sabrina ; Smith, Inga J. ; Solomon, Amy ; Storto, Andrea ; Takahashi, Ken ; Toniazzo, Thomas ; Vialard, Jérôme
    Natural variability and change of the Earth’s climate have significant global societal impacts. With its large heat and carbon capacity and relatively slow dynamics, the ocean plays an integral role in climate, and provides an important source of predictability at seasonal and longer timescales. In addition, the ocean provides the slowly evolving lower boundary to the atmosphere, driving, and modifying atmospheric weather. Understanding and monitoring ocean climate variability and change, to constrain and initialize models as well as identify model biases for improved climate hindcasting and prediction, requires a scale-sensitive, and long-term observing system. A climate observing system has requirements that significantly differ from, and sometimes are orthogonal to, those of other applications. In general terms, they can be summarized by the simultaneous need for both large spatial and long temporal coverage, and by the accuracy and stability required for detecting the local climate signals. This paper reviews the requirements of a climate observing system in terms of space and time scales, and revisits the question of which parameters such a system should encompass to meet future strategic goals of the World Climate Research Program (WCRP), with emphasis on ocean and sea-ice covered areas. It considers global as well as regional aspects that should be accounted for in designing observing systems in individual basins. Furthermore, the paper discusses which data-driven products are required to meet WCRP research and modeling needs, and ways to obtain them through data synthesis and assimilation approaches. Finally, it addresses the need for scientific capacity building and international collaboration in support of the collection of high-quality measurements over the large spatial scales and long time-scales required for climate research, bridging the scientific rational to the required resources for implementation.
  • Article
    Tropical pacific observing system
    (Frontiers Media, 2019-02-18) Smith, Neville ; Kessler, William S. ; Cravatte, Sophie ; Sprintall, Janet ; Wijffels, Susan E. ; Cronin, Meghan F. ; Sutton, Adrienne J. ; Serra, Yolande L. ; Dewitte, Boris ; Strutton, Peter G. ; Hill, Katherine Louise ; Sen Gupta, Alexander ; Lin, Xiaopei ; Takahashi, Ken ; Chen, Dake ; Brunner, Shelby
    This paper reviews the design of the Tropical Pacific Observing System (TPOS) and its governance and takes a forward look at prospective change. The initial findings of the TPOS 2020 Project embrace new strategic approaches and technologies in a user-driven design and the variable focus of the Framework for Ocean Observing. User requirements arise from climate prediction and research, climate change and the climate record, and coupled modeling and data assimilation more generally. Requirements include focus on the upper ocean and air-sea interactions, sampling of diurnal variations, finer spatial scales and emerging demands related to biogeochemistry and ecosystems. One aim is to sample a diversity of climatic regimes in addition to the equatorial zone. The status and outlook for meeting the requirements of the design are discussed. This is accomplished through integrated and complementary capabilities of networks, including satellites, moorings, profiling floats and autonomous vehicles. Emerging technologies and methods are also discussed. The outlook highlights a few new foci of the design: biogeochemistry and ecosystems, low-latitude western boundary currents and the eastern Pacific. Low latitude western boundary currents are conduits of tropical-subtropical interactions, supplying waters of mid to high latitude origin to the western equatorial Pacific and into the Indonesian Throughflow. They are an essential part of the recharge/discharge of equatorial warm water volume at interannual timescales and play crucial roles in climate variability on regional and global scales. The tropical eastern Pacific, where extreme El Niño events develop, requires tailored approaches owing to the complex of processes at work there involving coastal upwelling, and equatorial cold tongue dynamics, the oxygen minimum zone and the seasonal double Intertropical Convergence Zone. A pilot program building on existing networks is envisaged, complemented by a process study of the East Pacific ITCZ/warm pool/cold tongue/stratus coupled system. The sustainability of TPOS depends on effective and strong collaborative partnerships and governance arrangements. Revisiting regional mechanisms and engaging new partners in the context of a planned and systematic design will ensure a multi-purpose, multi-faceted integrated approach that is sustainable and responsive to changing needs.
  • Article
    The effects of thermohaline circulation on wind-driven circulation in the South China Sea
    (American Meteorological Society, 2012-12) Wang, Guihua ; Huang, Rui Xin ; Su, Jilan ; Chen, Dake
    The dynamic influence of thermohaline circulation on wind-driven circulation in the South China Sea (SCS) is studied using a simple reduced gravity model, in which the upwelling driven by mixing in the abyssal ocean is treated in terms of an upward pumping distributed at the base of the upper layer. Because of the strong upwelling of deep water, the cyclonic gyre in the northern SCS is weakened, but the anticyclonic gyre in the southern SCS is intensified in summer, while cyclonic gyres in both the southern and northern SCS are weakened in winter. For all seasons, the dynamic influence of thermohaline circulation on wind-driven circulation is larger in the northern SCS than in the southern SCS. Analysis suggests that the upwelling associated with the thermohaline circulation in the deep ocean plays a crucial role in regulating the wind-driven circulation in the upper ocean.
  • Article
    Satellite-observed strong subtropical ocean warming as an early signature of global warming
    (Nature Research, 2023-05-24) Yang, Hu ; Lohmann, Gerrit ; Stepanek, Christian ; Wang, Qiang ; Huang, Rui Xin ; Shi, Xiaoxu ; Liu, Jiping ; Chen, Dake ; Wang, Xulong ; Zhong, Yi ; Yang, Qinghua ; Bao, Ying ; Müller, Juliane
    Satellite observations covering the last four decades reveal an ocean warming pattern resembling the negative phase of the Pacific Decadal Oscillation. This pattern has therefore been widely interpreted as a manifestation of natural climate variability. Here, we re-examine the observed warming pattern and find that the predominant warming over the subtropical oceans, while mild warming or even cooling over the subpolar ocean, is dynamically consistent with the convergence and divergence of surface water. By comparison of observations, paleo-reconstructions, and model simulations, we propose that the observed warming pattern is likely a short-term transient response to the increased CO2 forcing, which only emerges during the early stage of anthropogenic warming. On centennial to millennial timescales, the subpolar ocean warming is expected to exceed the temporally dominant warming of the subtropical ocean. This delayed but amplified subpolar ocean warming has the potential to reshape the ocean-atmosphere circulation and threaten the stability of marine-terminating ice sheets.The observed sea surface temperature pattern of strong warming concentrated in the subtropical oceans is likely to be an early signature of climate change, according to observations and model simulations, whereas ocean warming at high latitudes is expected to become dominant in the future.