Spall Michael A.

No Thumbnail Available
Last Name
Spall
First Name
Michael A.
ORCID
0000-0003-1966-3122

Search Results

Now showing 1 - 20 of 73
  • Article
    Onset of time-dependence in a double-gyre circulation : barotropic basin modes versus classical baroclinic modes
    (Sears Foundation for Marine Research, 2010-03-01) Hristova, Hristina G. ; Dijkstra, Henk A. ; Spall, Michael A.
    Using a fully-implicit high-resolution two-layer quasi-geostrophic model combined with pseudo-arclength continuation methods, we perform a bifurcation analysis of double-gyre ocean flows to study their initial oscillatory instabilities. In this model, both wind- and thermally-forced flows can be represented. We demonstrate that on the branch of anti-symmetric steady-state solutions the ratio, Ω, of the flow advective speed to the long internal Rossby wave speed determines the type of oscillatory modes to first become unstable. This is the same nondimensional parameter that controls the shape of the geostrophic contours in the linear limit of the circulation. For large values of Ω, the first Hopf bifurcations correspond to the classical baroclinic modes with inter-monthly time periods arising from shear instability of the flow. For small values of Ω, the first Hopf bifurcations correspond instead to barotropic Rossby modes with shorter, monthly periods arising from mixed barotropic-baroclinic instability of the flow. By considering both a wind-forced and a thermally-forced ocean, we show that this is a robust feature that does not depend on the type of forcing driving the circulation.
  • Article
    Effect of sea surface temperature-wind stress coupling on baroclinic instability in the ocean
    (American Meteorological Society, 2007-04) Spall, Michael A.
    The impact of the observed relationship between sea surface temperature and surface wind stress on baroclinic instability in the ocean is explored using linear theory and a nonlinear model. A simple parameterization of the influence of sea surface temperature on wind stress is used to derive a surface boundary condition for the vertical velocity at the base of the oceanic Ekman layer. This boundary condition is applied to the classic linear, quasigeostrophic stability problem for a uniformly sheared flow originally studied by Eady in the 1940s. The results demonstrate that for a wind directed from warm water toward cold water, the coupling acts to enhance the growth rate, and increase the wavelength, of the most unstable wave. Winds in the opposite sense reduce the growth rate and decrease the wavelength of the most unstable wave. For representative coupling strengths, the change in growth rate can be as large as ±O(50%). This effect is largest for shallow, strongly stratified, low-latitude flows.
  • Article
    Observational and modeling evidence of seasonal trends in sediment-derived material inputs to the Chukchi Sea
    (American Geophysical Union, 2020-04-27) Kipp, Lauren ; Spall, Michael A. ; Pickart, Robert S. ; Kadko, David C. ; Moore, Willard S. ; Dabrowski, Jessica S. ; Charette, Matthew A.
    Benthic inputs of nutrients help support primary production in the Chukchi Sea and produce nutrient‐rich water masses that ventilate the halocline of the western Arctic Ocean. However, the complex biological and redox cycling of nutrients and trace metals make it difficult to directly monitor their benthic fluxes. In this study, we use radium‐228, which is a soluble radionuclide produced in sediments, and a numerical model of an inert, generic sediment‐derived tracer to study variability in sediment inputs to the Chukchi Sea. The 228Ra observations and modeling results are in general agreement and provide evidence of strong benthic inputs to the southern Chukchi Sea during the winter, while the northern shelf receives higher concentrations of sediment‐sourced materials in the spring and summer due to continued sediment‐water exchange as the water mass traverses the shelf. The highest tracer concentrations are observed near the shelfbreak and southeast of Hanna Shoal, a region known for high biological productivity and enhanced benthic biomass.
  • Article
    Dense water formation around islands
    (John Wiley & Sons, 2013-05-17) Spall, Michael A.
    Basic constraints on the dense water formation rate and circulation resulting from cooling around an island are discussed. The domain under consideration consists of an island surrounded by a shelf, a continental slope, and a stratified ocean. Atmospheric cooling over the shelf forms a dense water that penetrates down the sloping bottom into the stratified basin. Strong azimuthal flows are generated over the sloping bottom as a result of thermal wind. Thermally direct and indirect mean overturning cells are also forced over the slope as a result of bands of convergent and divergent Reynolds stresses associated with the jets. The Coriolis force associated with the net mass flux into the downwelling region over the slope is balanced by these nonlinear terms, giving rise to a fundamentally different momentum budget than arises in semienclosed marginal seas subject to cooling. A similar momentum balance is found for cases with canyons and ridges around the island provided that the terms are considered in a coordinate system that follows the topography. Both eddy fluxes and the mean overturning cells are important for the radial heat flux, although the eddy fluxes typically dominate. The properties of the dense water formed over the shelf (temperature, diapycnal mass flux) are predicted well by application of baroclinic instability theory and simple heat and mass budgets. It is shown that each of these quantities depends only on a nondimensional number derived from environmental parameters such as the shelf depth, Coriolis parameter, offshore temperature field, and atmospheric forcing.
  • Article
    Coupled ocean–atmosphere offshore decay scale of cold SST signals along upwelling eastern boundaries
    (American Meteorological Society, 2016-11-03) Spall, Michael A. ; Schneider, Niklas
    A simple analytic model is developed to represent the offshore decay of cold sea surface temperature (SST) signals that originate from wind-driven upwelling at a coastal boundary. The model couples an oceanic mixed layer to an atmospheric boundary layer through wind stress and air–sea heat exchange. The primary mechanism that controls SST is a balance between Ekman advection and air–sea exchange. The offshore penetration of the cold SST signal decays exponentially with a length scale that is the product of the ocean Ekman velocity and a time scale derived from the air–sea heat flux and the radiative balance in the atmospheric boundary layer. This cold SST signal imprints on the atmosphere in terms of both the boundary layer temperature and surface wind. Nonlinearities due to the feedback between SST and atmospheric wind, baroclinic instability, and thermal wind in the atmospheric boundary layer all slightly modify this linear theory. The decay scales diagnosed from two-dimensional and three-dimensional eddy-resolving numerical ocean models are in close agreement with the theory, demonstrating that the basic physics represented by the theory remain dominant even in these more complete systems. Analysis of climatological SST off the west coast of the United States also shows a decay of the cold SST anomaly with scale roughly in agreement with the theory.
  • Article
    An idealized modeling study of the midlatitude variability of the wind-driven meridional overturning circulation
    (American Meteorological Society, 2021-07-13) Spall, Michael A.
    The frequency and latitudinal dependence of the midlatitude wind-driven meridional overturning circulation (MOC) is studied using theory and linear and nonlinear applications of a quasigeostrophic numerical model. Wind forcing is varied either by changing the strength of the wind or by shifting the meridional location of the wind stress curl pattern. At forcing periods of less than the first-mode baroclinic Rossby wave basin crossing time scale, the linear response in the middepth and deep ocean is in phase and opposite to the Ekman transport. For forcing periods that are close to the Rossby wave basin crossing time scale, the upper and deep MOC are enhanced, and the middepth MOC becomes phase shifted, relative to the Ekman transport. At longer forcing periods the deep MOC weakens and the middepth MOC increases, but eventually for long enough forcing periods (decadal) the entire wind-driven MOC spins down. Nonlinearities and mesoscale eddies are found to be important in two ways. First, baroclinic instability causes the middepth MOC to weaken, lose correlation with the Ekman transport, and lose correlation with the MOC in the opposite gyre. Second, eddy thickness fluxes extend the MOC beyond the latitudes of direct wind forcing. These results are consistent with several recent studies describing the four-dimensional structure of the MOC in the North Atlantic Ocean.
  • Preprint
    Role of shelfbreak upwelling in the formation of a massive under-ice bloom in the Chukchi Sea
    ( 2014-02) Spall, Michael A. ; Pickart, Robert S. ; Brugler, Eric T. ; Moore, G. W. K. ; Thomas, Leif N. ; Arrigo, Kevin R.
    In the summer of 2011, an oceanographic survey carried out by the Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific Environment (ICESCAPE) program revealed the presence of a massive phytoplankton bloom under the ice near the shelfbreak in the central Chukchi Sea. For most of the month preceding the measurements there were relatively strong easterly winds, providing upwelling favorable conditions along the shelfbreak. Analysis of similar hydrographic data from summer 2002, in which there were no persistent easterly winds, found no evidence of upwelling near the shelfbreak. A two-dimensional ocean circulation model is used to show that sufficiently strong winds can result not only in upwelling of high nutrient water from offshore onto the shelf, but it can also transport the water out of the bottom boundary layer into the surface Ekman layer at the shelf edge. The extent of upwelling is determined by the degree of overlap between the surface Ekman layer and the bottom boundary layer on the outer shelf. Once in the Ekman layer, this high nutrient water is further transported to the surface through mechanical mixing driven by the surface stress. Two model tracers, a nutrient tracer and a chlorophyll tracer, reveal distributions very similar to that observed in the data. These results suggest that the biomass maximum near the shelfbreak during the massive bloom in summer 2011 resulted from an enhanced supply of nutrients upwelled from the halocline seaward of the shelf. The decade long trend in summertime surface winds suggest that easterly winds in this region are increasing in strength and that such bloom events will become more common.
  • Article
    Dynamics and thermodynamics of the mean transpolar drift and ice thickness in the Arctic Ocean
    (American Meteorological Society, 2019-11-15) Spall, Michael A.
    A theory for the mean ice thickness and the Transpolar Drift in the Arctic Ocean is developed. Asymptotic expansions of the ice momentum and thickness equations are used to derive analytic expressions for the leading-order ice thickness and velocity fields subject to wind stress forcing and heat loss to the atmosphere. The theory is most appropriate for the eastern and central Arctic, but not for the region of the Beaufort Gyre subject to anticyclonic wind stress curl. The scale analysis reveals two distinct regimes: a thin ice regime in the eastern Arctic and a thick ice regime in the western Arctic. In the eastern Arctic, the ice drift is controlled by a balance between wind and ocean drag, while the ice thickness is controlled by heat loss to the atmosphere. In contrast, in the western Arctic, the ice thickness is determined by a balance between wind and internal ice stress, while the drift is indirectly controlled by heat loss to the atmosphere. The southward flow toward Fram Strait is forced by the across-wind gradient in ice thickness. The basic predictions for ice thickness, heat loss, ice volume, and ice export from the theory compare well with an idealized, coupled ocean–ice numerical model over a wide range of parameter space. The theory indicates that increasing atmospheric temperatures or wind speed result in a decrease in maximum ice thickness and ice volume. Increasing temperatures also result in a decrease in heat loss to the atmosphere and ice export through Fram Strait, while increasing winds drive increased heat loss and ice export.
  • Article
    A new mechanism for the generation of quasi-zonal jets in the ocean
    (American Geophysical Union, 2012-05-16) Wang, Jinbo ; Spall, Michael A. ; Flierl, Glenn R. ; Malanotte-Rizzoli, Paola
    A simple barotropic quasi-geostrophic model is used to demonstrate that instabilities radiated from an unstable eastern boundary current can generate zonal striations in the ocean interior with realistic wavelengths and amplitudes. Nonlinear transfer of energy from the more unstable trapped modes is important for radiating modes to overcome friction. The dynamics shown here are generic enough to point to the eastern boundary current as a likely source of the observed striations extending from oceanic eastern boundaries.
  • Article
    Lateral coupling in baroclinically unstable flows
    (American Meteorological Society, 2008-06) Spall, Michael A. ; Pedlosky, Joseph
    A two-layer quasigeostrophic model in a channel is used to study the influence of lateral displacements of regions of different sign mean potential vorticity gradient (Πy) on the growth rate and structure of linearly unstable waves. The mean state is very idealized, with a region of positive Πy in the upper layer and a region of negative Πy in the lower layer; elsewhere Πy is zero. The growth rate and structure of the model’s unstable waves are quite sensitive to the amount of overlap between the two regions. For large amounts of overlap (more than several internal deformation radii), the channel modes described by Phillips’ model are recovered. The growth rate decreases abruptly as the amount of overlap decreases below the internal deformation radius. However, unstable modes are also found for cases in which the two nonzero Πy regions are separated far apart. In these cases, the wavenumber of the unstable waves decreases such that the aspect ratio of the wave remains O(1). The waves are characterized by a large-scale barotropic component that has maximum amplitude near one boundary but extends all the way across the channel to the opposite boundary. Near the boundaries, the wave is of mixed barotropic–baroclinic structure with cross-front scales on the order of the internal deformation radius. The perturbation heat flux is concentrated near the nonzero Πy regions, but the perturbation momentum flux extends all the way across the channel. The perturbation fluxes act to reduce the isopycnal slopes near the channel boundaries and to transmit zonal momentum from the region of Πy > 0 to the region on the opposite side of the channel where Πy < 0. These nonzero perturbation momentum fluxes are found even for a mean state that has no lateral shear in the velocity field.
  • Article
    Interaction of Ekman layers and islands
    (American Meteorological Society, 2013-05) Spall, Michael A. ; Pedlosky, Joseph
    The circulation induced by the interaction of surface Ekman transport with an island is considered using both numerical models and linear theory. The basic response is similar to that found for the interaction of Ekman layers and an infinite boundary, namely downwelling (upwelling) in narrow boundary layers and deformation-scale baroclinic boundary layers with associated strong geostrophic flows. The presence of the island boundary, however, allows the pressure signal to propagate around the island so that the regions of upwelling and downwelling are dynamically connected. In the absence of stratification the island acts as an effective barrier to the Ekman transport. The presence of stratification supports baroclinic boundary currents that provide an advective pathway from one side of the island to the other. The resulting steady circulation is quite complex. Near the island, both geostrophic and ageostrophic velocity components are typically large. The density anomaly is maximum below the surface and, for positive wind stress, exhibits an anticyclonic phase rotation with depth (direction of Kelvin wave propagation) such that anomalously warm water can lie below regions of Ekman upwelling. The horizontal and vertical velocities exhibit similar phase changes with depth. The addition of a sloping bottom can act to shield the deep return flow from interacting with the island and providing mass transport into/out of the surface Ekman layer. In these cases, the required transport is provided by a pair of recirculation gyres that connect the narrow upwelling/downwelling boundary layers on the eastern and western sides of the island, thus directly connecting the Ekman transport across the island.
  • Article
    On the effect of a sill on dense water formation in a marginal sea
    (Sears Foundation for Marine Research, 2008-05) Iovino, Doroteaciro ; Straneo, Fiamma ; Spall, Michael A.
    The properties of water mass transformation in a semi-enclosed basin, separated from the open ocean by a sill and subject to surface cooling, are analyzed both theoretically and numerically using an ocean general circulation model. This study extends previous studies of convection in a marginal sea to the case with a sill. The sill has a strong impact on both the properties of the dense water formed in the interior and on those of the waters flowing out the marginal sea. It results in a colder interior and colder outflow compared to the case with no sill. Dynamically, this is explained by considering that the sill limits the geostrophic contours over which the open ocean/marginal sea exchange can occur. The impact of the sill, however, is not simply limited to a topographic constriction; instead the sill also decreases the stability of the boundary current, which, in turn, results in relatively large heat flux into the interior and colder outflow. The theories that relate the properties of the dense waters formed in the interior, and those of the outflow, are modified to include the impact of the sill. These are found to compare well with the numerical simulations and provide a useful tool for the interpretation of these results. These idealized simulations capture the basic features of the water mass transformation processes in the Nordic Seas and, in particular, provide a dynamical explanation for the difference between the dense waters formed and the source of the overflows water.
  • Article
    Response to a steady poleward outflow. Part II : oscillations and eddies
    (American Meteorological Society, 2009-07) Durland, Theodore S. ; Spall, Michael A. ; Pedlosky, Joseph
    A conceptually simple model is presented for predicting the amplitude and periodicity of eddies generated by a steady poleward outflow in a 1½-layer β-plane formulation. The prediction model is rooted in linear quasigeostrophic dynamics but is capable of predicting the amplitude of the β plume generated by outflows in the nonlinear range. Oscillations in the plume amplitude are seen to represent a near-zero group velocity response to an adjustment process that can be traced back to linear dynamics. When the plume-amplitude oscillations become large enough so that the coherent β plume is replaced by a robust eddy field, the eddy amplitude is still constrained by the plume-amplitude prediction model. The eddy periodicity remains close to that of the predictable, near-zero group-velocity linear oscillations. Striking similarities between the patterns of variability in the model and observations south of Indonesia’s Lombok Strait suggest that the processes investigated in this study may play an important role in the generation of the observed eddy field of the Indo-Australian Basin.
  • Article
    Katabatic wind-driven exchange in fjords
    (John Wiley & Sons, 2017-10-28) Spall, Michael A. ; Jackson, Rebecca H. ; Straneo, Fiamma
    The general issue of katabatic wind-driven exchange in fjords is considered using an idealized numerical model, theory, and observations. Two regimes are identified. For fjords narrower than a viscous boundary layer width, the exchange is limited by a balance between wind and friction in lateral boundary layers. For the nonlinear viscous parameterization used here, this boundary layer thickness depends on the properties of the fjord, such as stratification and length, as well as on the wind stress and numerical parameters such as grid spacing and an empirical constant. For wider fjords typical of east Greenland, the balance is primarily between wind, the along-fjord pressure gradient, and acceleration, in general agreement with previous two-layer nonrotating theories. It is expected that O(10%) of the surface layer will be flushed out of the fjord by a single wind event. Application of the idealized model to a typical katabatic wind event produces outflowing velocities that are in general agreement with observations in Sermilik Fjord, a large glacial fjord in southeast Greenland. The presence of a sill has only a minor influence on the exchange until the sill penetrates over most of the lower layer thickness, in which cases the exchange is reduced. It is concluded that the multiple katabatic wind events per winter that are experienced by the fjords along east Greenland represent an important mechanism of exchange between the fjord and shelf, with implications for the renewal of warm, salty waters at depth and for the export of glacial freshwater in the upper layer.
  • Article
    Response to a steady poleward outflow. Part I : the linear, quasigeostrophic problem
    (American Meteorological Society, 2009-07) Durland, Theodore S. ; Pedlosky, Joseph ; Spall, Michael A.
    The response of a zonal channel to a uniform, switched-on but subsequently steady poleward outflow is presented. An eastward coastal current with a Kelvin wave’s cross-shore structure is found to be generated instantly upon initiation of the outflow. The current is essentially in geostrophic balance everywhere except for the vicinity of the outflow channel mouth, where the streamlines must cross planetary vorticity contours to feed the current. The adjustment of this region generates a plume that propagates westward at Rossby wave speeds. The cross-shore structure of the plume varies with longitude, and at any given longitude it evolves with time. The authors show that the plume evolution can be understood both conceptually and quantitatively as the westward propagation of the Kelvin current’s meridional spectrum, with each spectral element propagating at its own Rossby wave group velocity.
  • Article
    Large changes in sea ice triggered by small changes in Atlantic water temperature
    (American Meteorological Society, 2018-05-31) Jensen, Mari F. ; Nisancioglu, Kerim H. ; Spall, Michael A.
    The sensitivity of sea ice to the temperature of inflowing Atlantic water across the Greenland–Scotland Ridge is investigated using an eddy-resolving configuration of the Massachusetts Institute of Technology General Circulation Model with idealized topography. During the last glacial period, when climate on Greenland is known to have been extremely unstable, sea ice is thought to have covered the Nordic seas. The dramatic excursions in climate during this period, seen as large abrupt warming events on Greenland and known as Dansgaard–Oeschger (DO) events, are proposed to have been caused by a rapid retreat of Nordic seas sea ice. Here, we show that a full sea ice cover and Arctic-like stratification can exist in the Nordic seas given a sufficiently cold Atlantic inflow and corresponding low transport of heat across the Greenland–Scotland Ridge. Once sea ice is established, continued sea ice formation and melt efficiently freshens the surface ocean and makes the deeper layers more saline. This creates a strong salinity stratification in the Nordic seas, similar to today’s Arctic Ocean, with a cold fresh surface layer protecting the overlying sea ice from the warm Atlantic water below. There is a nonlinear response in Nordic seas sea ice to Atlantic water temperature with simulated large abrupt changes in sea ice given small changes in inflowing temperature. This suggests that the DO events were more likely to have occurred during periods of reduced warm Atlantic water inflow to the Nordic seas.
  • Article
    Topographic influences on the wind-driven exchange between marginal seas and the open ocean
    (American Meteorological Society, 2021-12-01) Guo, Haihong ; Spall, Michael A.
    The wind-driven exchange through complex ridges and islands between marginal seas and the open ocean is studied using both numerical and analytical models. The models are forced by a steady, spatially uniform northward wind stress intended to represent the large-scale, low-frequency wind patterns typical of the seasonal monsoons in the western Pacific Ocean. There is an eastward surface Ekman transport out of the marginal sea and westward geostrophic inflows into the marginal sea. The interaction between the Ekman transport and an island chain produces strong baroclinic flows along the island boundaries with a vertical depth that scales with the ratio of the inertial boundary layer thickness to the baroclinic deformation radius. The throughflows in the gaps are characterized by maximum transport in the center gap and decreasing transports toward the southern and northern tips of the island chain. An extended island rule theory demonstrates that throughflows are determined by the collective balance between viscosity on the meridional boundaries and the eastern side boundary of the islands. The outflowing transport is balanced primarily by a shallow current that enters the marginal sea along its equatorward boundary. The islands can block some direct exchange and result in a wind-driven overturning cell within the marginal sea, but this is compensated for by eastward zonal jets around the southern and northern tips of the island chain. Topography in the form of a deep slope, a ridge, or shallow shelves around the islands alters the current pathways but ultimately is unable to limit the total wind-driven exchange between the marginal sea and the open ocean.
  • Article
    The North Icelandic Jet and its relationship to the North Icelandic Irminger Current
    (Sears Foundation for Marine Research, 2017-09-01) Pickart, Robert S. ; Spall, Michael A. ; Torres, Daniel J. ; Våge, Kjetil ; Valdimarsson, Héðinn ; Nobre, Carolina ; Moore, G. W. K. ; Jonsson, Steingrimur ; Mastropole, Dana M.
    Shipboard hydrographic and velocity sections are used to quantify aspects of the North Icelandic Jet (NIJ), which transports dense overflow water to Denmark Strait, and the North Icelandic Irminger Current (NIIC), which imports Atlantic water to the Iceland Sea. The mean transports of the two currents are comparable, in line with previous notions that there is a local overturning cell in the Iceland Sea that transforms the Atlantic water to dense overflow water. As the NIJ and NIIC flow along the north side of Iceland, they appear to share a common front when the bottom topography steers them close together, but even when they are separate there is a poleward flow inshore of the NIJ. The interannual variability in salinity of the inflowing NIIC is in phase with that of the outflowing NIJ. It is suggested, however, that the NIIC signal does not dictate that of the NIJ. Instead, the combination of liquid and solid freshwater flux from the east Greenland boundary can account for the observed net freshening of the NIIC to the NIJ for the densest half of the overturning circulation in the northwest Iceland Sea. This implies that the remaining overturning must occur in a different geographic area, consistent with earlier model results. The year-to-year variability in salinity of the NIJ can be explained by applying annual anomalies of evaporation minus precipitation over the Iceland Sea to a one-dimensional mixing model. These anomalies vary in phase with the wind stress curl over the North Atlantic subpolar gyre, which previous studies have shown drives the interannual variation in salinity of the inflowing NIIC.
  • Article
    The contrasting dynamics of the buoyancy-forced Lofoten and Greenland Basins
    (American Meteorological Society, 2020-04-27) Ypma, Stefanie ; Spall, Michael A. ; Lambert, Erwin ; Georgiou, Sotiria ; Pietrazak, Julie D. ; Katsman, Caroline A.
    The Nordic seas are commonly described as a single basin to investigate their dynamics and sensitivity to environmental changes when using a theoretical framework. Here, we introduce a conceptual model for a two-basin marginal sea that better represents the Nordic seas geometry. In our conceptual model, the marginal sea is characterized by both a cyclonic boundary current and a front current as a result of different hydrographic properties east and west of the midocean ridge. The theory is compared to idealized model simulations and shows good agreement over a wide range of parameter settings, indicating that the physics in the two-basin marginal sea is well captured by the conceptual model. The balances between the atmospheric buoyancy forcing and the lateral eddy heat fluxes from the boundary current and the front current differ between the Lofoten and the Greenland Basins, since the Lofoten Basin is more strongly eddy dominated. Results show that this asymmetric sensitivity leads to opposing responses depending on the strength of the atmospheric buoyancy forcing. Additionally, the front current plays an essential role for the heat and volume budget of the two basins, by providing an additional pathway for heat toward the interior of both basins via lateral eddy heat fluxes. The variability of the temperature difference between east and west influences the strength of the different flow branches through the marginal sea and provides a dynamical explanation for the observed correlation between the front current and the slope current of the Norwegian Atlantic Current in the Nordic seas.
  • Article
    Radiating instability of a meridional boundary current
    (American Meteorological Society, 2008-10) Hristova, Hristina G. ; Pedlosky, Joseph ; Spall, Michael A.
    A linear stability analysis of a meridional boundary current on the beta plane is presented. The boundary current is idealized as a constant-speed meridional jet adjacent to a semi-infinite motionless far field. The far-field region can be situated either on the eastern or the western side of the jet, representing a western or an eastern boundary current, respectively. It is found that when unstable, the meridional boundary current generates temporally growing propagating waves that transport energy away from the locally unstable region toward the neutral far field. This is the so-called radiating instability and is found in both barotropic and two-layer baroclinic configurations. A second but important conclusion concerns the differences in the stability properties of eastern and western boundary currents. An eastern boundary current supports a greater number of radiating modes over a wider range of meridional wavenumbers. It generates waves with amplitude envelopes that decay slowly with distance from the current. The radiating waves tend to have an asymmetrical horizontal structure—they are much longer in the zonal direction than in the meridional, a consequence of which is that unstable eastern boundary currents, unlike western boundary currents, have the potential to act as a source of zonal jets for the interior of the ocean.