Sullivan Chris

No Thumbnail Available
Last Name
Sullivan
First Name
Chris
ORCID

Search Results

Now showing 1 - 2 of 2
  • Dataset
    Biogeochemistry, metabolomics, and metagenomics of Florida's Coral Reef from sampling conducted over 15 days in June 2019
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2023-03-08) Apprill, Amy ; Kujawinski, Elizabeth ; Muller, Erinn ; Sandin, Stuart ; Weber, Laura ; Clark, Abigail ; Kido Soule, Melissa C. ; Longnecker, Krista ; Zgliczynski, Brian ; Sullivan, Chris ; Becker, Cynthia Carroll
    This comparative 'omics dataset was collected over 15 days in June 2019 along Florida's Coral Reef. We assessed 85 reefs for the prevalence of stony coral tissue loss disease (SCTLD), nutrients (total organic carbon (TOC), total organic nitrogen (TON), inorganic nutrients), and abundances of microbial functional groups (Prochlorococcus, Synechococcus, picoeukaryotes, and heterotrophic microbes (unpigmented bacteria and archaea)), from reef depth waters. At 45 of the reefs, high-resolution photomosaics were used to examine the composition of benthic organisms. At 13 geographically dispersed reefs, we collected seawater (1.7 liters in biological triplicates) for both targeted and untargeted metabolomics analyses. Seawater (2 liters in duplicate) was collected at 26 sites, including the 13 examined for metabolomics, for taxonomic (bacteria and archaea 16S ribosomal RNA gene) and functional (shotgun metagenome) microbiome analyses, and chlorophyll. Given the stony coral tissue loss disease outbreak, we also targeted healthy and diseased coral tissue and near-coral seawater for taxonomic microbiome (16S rRNA gene) analysis (11 sites). Significance: Microorganisms and the dissolved metabolites they process are central to the functioning of ocean ecosystems. These 'invisible' ocean components are poorly understood in biodiverse and productive coral reef ecosystems, where they contribute to nutrient cycling and signaling cues between reef organisms. Microbes and dissolved metabolites offer a new means to examine reef features and have applications for conservation, monitoring, and restoration efforts in these changing ecosystems. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/890979
  • Article
    Microorganisms and dissolved metabolites distinguish Florida’s Coral Reef habitats
    (National Academy of Sciences, 2023-09-05) Becker, Cynthia C. ; Weber, Laura ; Zgliczynski, Brian J. ; Sullivan, Chris ; Sandin, Stuart A. ; Muller, Erinn ; Clark, Abigail S. ; Kido Soule, Melissa C. ; Longnecker, Krista ; Kujawinski, Elizabeth ; Apprill, Amy
    As coral reef ecosystems experience unprecedented change, effective monitoring of reef features supports management, conservation, and intervention efforts. Omic techniques show promise in quantifying key components of reef ecosystems including dissolved metabolites and microorganisms that may serve as invisible sensors for reef ecosystem dynamics. Dissolved metabolites are released by reef organisms and transferred among microorganisms, acting as chemical currencies and contributing to nutrient cycling and signaling on reefs. Here, we applied four omic techniques (taxonomic microbiome via amplicon sequencing, functional microbiome via shotgun metagenomics, targeted metabolomics, and untargeted metabolomics) to waters overlying Florida's Coral Reef, as well as microbiome profiling on individual coral colonies from these reefs to understand how microbes and dissolved metabolites reflect biogeographical, benthic, and nutrient properties of this 500-km barrier reef. We show that the microbial and metabolite omic approaches each differentiated reef habitats based on geographic zone. Further, seawater microbiome profiling and targeted metabolomics were significantly related to more reef habitat characteristics, such as amount of hard and soft coral, compared to metagenomic sequencing and untargeted metabolomics. Across five coral species, microbiomes were also significantly related to reef zone, followed by species and disease status, suggesting that the geographic water circulation patterns in Florida also impact the microbiomes of reef builders. A combination of differential abundance and indicator species analyses revealed metabolite and microbial signatures of specific reef zones, which demonstrates the utility of these techniques to provide new insights into reef microbial and metabolite features that reflect broader ecosystem processes.