Elsenbeck James R.

No Thumbnail Available
Last Name
Elsenbeck
First Name
James R.
ORCID

Search Results

Now showing 1 - 7 of 7
  • Article
    Prediction of silicate melt viscosity from electrical conductivity : a model and its geophysical implications
    (John Wiley & Sons, 2013-06-12) Pommier, Anne ; Evans, Rob L. ; Key, Kerry ; Tyburczy, James A. ; Mackwell, Stephen ; Elsenbeck, James R.
    Our knowledge of magma dynamics would be improved if geophysical data could be used to infer rheological constraints in melt-bearing zones. Geophysical images of the Earth's interior provide frozen snapshots of a dynamical system. However, knowledge of a rheological parameter such as viscosity would constrain the time-dependent dynamics of melt bearing zones. We propose a model that relates melt viscosity to electrical conductivity for naturally occurring melt compositions (including H2O) and temperature. Based on laboratory measurements of melt conductivity and viscosity, our model provides a rheological dimension to the interpretation of electromagnetic anomalies caused by melt and partially molten rocks (melt fraction ~ >0.7).
  • Article
    Conductivity structure of the lithosphere-asthenosphere boundary beneath the eastern North American margin
    (John Wiley & Sons, 2017-02-25) Attias, Eric ; Evans, Rob L. ; Naif, Samer ; Elsenbeck, James R. ; Key, Kerry
    Tectonic plate motion and mantle dynamics processes are heavily influenced by the characteristics of the lithosphere-asthenosphere boundary (LAB), yet this boundary remains enigmatic regarding its properties and geometry. The processes involved in rifting at passive margins result in substantial alteration of the lithosphere through the transition from continental to oceanic lithologies. Here we employ marine magnetotelluric (MT) data acquired along a ∼135 km long profile, offshore Martha's Vineyard, New England, USA, to image the electrical conductivity structure beneath the New England continental margin for the first time. We invert the data using two different MT 2-D inversion algorithms and present a series of models that are obtained using three different parameterizations: fully unconstrained, unconstrained with an imposed LAB discontinuity and a priori constrained lithosphere resistivity. This suite of models infers variability in the depth of the LAB, with an average depth of 115 km at the eastern North America passive margin. Models robustly detect a ∼350 Ωm lithospheric anomalous conductivity zone (LACZ) that extends vertically through the entire lithosphere. Our preferred conductivity model is consistent with regional P-to-S receiver function data, shear-wave velocity, gravity anomalies, and prominent geological features. We propose that the LACZ is indicative of paleolithospheric thinning, either resulting from kimberlite intrusions associated with rifting and the New England Great Meteor hot spot track, or from shear-driven localized deformation related to rifting.
  • Article
    Structure of the lithosphere beneath the Barotse Basin, western Zambia, from magnetotelluric data.
    (American Geophysical Union, 2019-01-30) Evans, Rob L. ; Elsenbeck, James R. ; Zhu, Jian ; Abdelsalam, Mohamed ; Sarafian, Emily ; Mutamina, Daniel ; Chilongola, F ; Atekwana, Estella ; Jones, Alan
    A magnetotelluric survey in the Barotse Basin of western Zambia shows clear evidence for thinned lithosphere beneath an orogenic belt. The uppermost asthenosphere, at a depth of 60–70 km, is highly conductive, suggestive of the presence of a small amount of partial melt, despite the fact that there is no surface expression of volcanism in the region. Although the data support the presence of thicker cratonic lithosphere to the southeast of the basin, the lithospheric thickness is not well resolved and models show variations ranging from ~80 to 150 km in this region. Similarly variable is the conductivity of the mantle beneath the basin and immediately beneath the cratonic lithosphere to the southeast, although the conductivity is required to be elevated compared to normal lithospheric mantle. In a general sense, two classes of model are compatible with the magnetotelluric data: one with a moderately conductive mantle and one with more elevated conductivities. This latter class would be consistent with the impingement of a stringer of plume‐fed melt beneath the cratonic lithosphere, with the melt migrating upslope to thermally erode lithosphere beneath the orogenic belt that is overlain by the Barotse Basin. Such processes are potentially important for intraplate volcanism and also for development or propagation of rifting as lithosphere is thinned and weakened by melt. Both models show clear evidence for thinning of the lithosphere beneath the orogenic belt, consistent with elevated heat flow data in the region.
  • Article
    Structure of the mantle beneath the Alboran Basin from magnetotelluric soundings
    (John Wiley & Sons, 2015-12-19) Garcia, Xavier ; Seille, H. ; Elsenbeck, James R. ; Evans, Rob L. ; Jegen, Marion ; Holz, Sebastian ; Ledo, Juanjo ; Lovatini, Andrea ; Marti, Anna ; Marcuello, Alejandro ; Queralt, Pilar ; Ungarelli, Carlo ; Ranero, Cesar R.
    We present results of marine MT acquisition in the Alboran sea that also incorporates previously acquired land MT from southern Spain into our analysis. The marine data show complex MT response functions with strong distortion due to seafloor topography and the coastline, but inclusion of high resolution topography and bathymetry and a seismically defined sediment unit into a 3-D inversion model has allowed us to image the structure in the underlying mantle. The resulting resistivity model is broadly consistent with a geodynamic scenario that includes subduction of an eastward trending plate beneath Gibraltar, which plunges nearly vertically beneath the Alboran. Our model contains three primary features of interest: a resistive body beneath the central Alboran, which extends to a depth of ∼150 km. At this depth, the mantle resistivity decreases to values of ∼100 Ohm-m, slightly higher than those seen in typical asthenosphere at the same depth. This transition suggests a change in slab properties with depth, perhaps reflecting a change in the nature of the seafloor subducted in the past. Two conductive features in our model suggest the presence of fluids released by the subducting slab or a small amount of partial melt in the upper mantle (or both). Of these, the one in the center of the Alboran basin, in the uppermost-mantle (20–30 km depth) beneath Neogene volcanics and west of the termination of the Nekkor Fault, is consistent with geochemical models, which infer highly thinned lithosphere and shallow melting in order to explain the petrology of seafloor volcanics.
  • Article
    The electrical structure of the central Pacific upper mantle constrained by the NoMelt experiment
    (John Wiley & Sons, 2015-04-18) Sarafian, Emily K. ; Evans, Rob L. ; Collins, John A. ; Elsenbeck, James R. ; Gaetani, Glenn A. ; Gaherty, James B. ; Hirth, Greg ; Lizarralde, Daniel
    The NoMelt experiment imaged the mantle beneath 70 Ma Pacific seafloor with the aim of understanding the transition from the lithosphere to the underlying convecting asthenosphere. Seafloor magnetotelluric data from four stations were analyzed using 2-D regularized inverse modeling. The preferred electrical model for the region contains an 80 km thick resistive (>103 Ωm) lithosphere with a less resistive (∼50 Ωm) underlying asthenosphere. The preferred model is isotropic and lacks a highly conductive (≤10 Ωm) layer under the resistive lithosphere that would be indicative of partial melt. We first examine temperature profiles that are consistent with the observed conductivity profile. Our profile is consistent with a mantle adiabat ranging from 0.3 to 0.5°C/km. A choice of the higher adiabatic gradient means that the observed conductivity can be explained solely by temperature. In contrast, a 0.3°C/km adiabat requires an additional mechanism to explain the observed conductivity profile. Of the plausible mechanisms, H2O, in the form of hydrogen dissolved in olivine, is the most likely explanation for this additional conductivity. Our profile is consistent with a mostly dry lithosphere to 80 km depth, with bulk H2O contents increasing to between 25 and 400 ppm by weight in the asthenosphere with specific values dependent on the choice of laboratory data set of hydrous olivine conductivity and the value of mantle oxygen fugacity. The estimated H2O contents support the theory that the rheological lithosphere is a result of dehydration during melting at a mid-ocean ridge with the asthenosphere remaining partially hydrated and weakened as a result.
  • Preprint
    Implications of grain size evolution on the seismic structure of the oceanic upper mantle
    ( 2009-03-04) Behn, Mark D. ; Hirth, Greg ; Elsenbeck, James R.
    We construct a 1-D steady-state channel flow model for grain size evolution in the oceanic upper mantle using a composite diffusion-dislocation creep rheology. Grain size evolution is calculated assuming that grain size is controlled by a competition between dynamic recrystallization and grain growth. Applying this grain size evolution model to the oceanic upper mantle we calculate grain size as a function of depth, seafloor age, and mantle water content. The resulting grain size structure is used to predict shear wave velocity (VS) and seismic quality factor (Q). For a plate age of 60 Myr and an olivine water content of 1000 H/106Si, we find that grain size reaches a minimum of ~15 mm at ~150 km depth and then increases to ~20–30 mm at a depth of 400 km. This grain size structure produces a good fit to the low seismic shear wave velocity zone (LVZ) in oceanic upper mantle observed by surface wave studies assuming that the influence of hydrogen on anelastic behavior is similar to that observed for steady state creep. Further it predicts a viscosity of ~1019 Pa s at 150 km depth and dislocation creep to be the dominant deformation mechanism throughout the oceanic upper mantle, consistent with geophysical observations. We predict larger grain sizes than proposed in recent studies, in which the LVZ was explained by a dry mantle and a minimum grain size of 1 mm. However, we show that for a 1 mm grain size, diffusion creep is the dominant deformation mechanism above 100– 200 km depth, inconsistent with abundant observations of seismic anisotropy from surface wave studies. We therefore conclude that a combination of grain size evolution and a hydrated upper mantle is the most likely explanation for both the isotropic and anisotropic seismic structure of the oceanic upper mantle. Our results also suggest that melt extraction from the mantle will be significantly more efficient than predicted in previous modeling studies that assumed grain sizes of ~1 mm.
  • Thesis
    Influence of grain size evolution and water content on the seismic structure of the oceanic upper mantle
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2007-06) Elsenbeck, James R.
    Grain size is an important material property that has significant effects on the viscosity, dominant deformation mechanism, attenuation, and shear wave velocity of the oceanic upper mantle. Several studies have investigated the kinetics of grain size evolution, but have yet to incorporate these evolution equations into large-scale flow models of the oceanic upper mantle. We construct self-consistent 1.5-D steady-state Couette flow models for the oceanic upper mantle to constrain how grain size evolves with depth assuming a composite diffusion-dislocation creep rheology. We investigate the importance of water content by examining end-member models for a dry, wet, and dehydrated mantle (with dehydration above ~60-70 km depth). We find that grain size increases with depth, and varies with both plate age and water content. Specifically, the dehydration model predicts a grain size of ~11 mm at a depth of 150 km for 75 Myr-old oceanic mantle. This results in a viscosity of ~1019 Pa s, consistent with estimates from geoid and glacial rebound studies. We also find that deformation is dominated by dislocation creep beneath ~60-70 km depth, in agreement with observations of seismic anisotropy in the oceanic upper mantle. The calculated grain size profiles are input into a Burger's model system to calculate seismic quality factor (Q) and shear wave velocity (Vs). For ages older than 50 Myrs, we find that Q and Vs predicted by the dehydration case best match seismic reference models for Q and the low seismic shear wave velocity zone (LVZ) observed in the oceanic upper mantle.