Kravtsov Sergey K.

No Thumbnail Available
Last Name
First Name
Sergey K.

Search Results

Now showing 1 - 6 of 6
  • Article
    The effects of mesoscale ocean–atmosphere coupling on the large-scale ocean circulation
    (American Meteorological Society, 2009-08-01) Hogg, Andrew Mc C. ; Dewar, William K. ; Berloff, Pavel S. ; Kravtsov, Sergey K. ; Hutchinson, David K.
    Small-scale variation in wind stress due to ocean–atmosphere interaction within the atmospheric boundary layer alters the temporal and spatial scale of Ekman pumping driving the double-gyre circulation of the ocean. A high-resolution quasigeostrophic (QG) ocean model, coupled to a dynamic atmospheric mixed layer, is used to demonstrate that, despite the small spatial scale of the Ekman-pumping anomalies, this phenomenon significantly modifies the large-scale ocean circulation. The primary effect is to decrease the strength of the nonlinear component of the gyre circulation by approximately 30%–40%. This result is due to the highest transient Ekman-pumping anomalies destabilizing the flow in a dynamically sensitive region close to the western boundary current separation. The instability of the jet produces a flux of potential vorticity between the two gyres that acts to weaken both gyres.
  • Article
    Ocean eddy dynamics in a coupled ocean-atmosphere model
    (American Meteorological Society, 2007-05) Berloff, Pavel S. ; Dewar, William K. ; Kravtsov, Sergey K. ; McWilliams, James C.
    The role of mesoscale oceanic eddies is analyzed in a quasigeostrophic coupled ocean–atmosphere model operating at a large Reynolds number. The model dynamics are characterized by decadal variability that involves nonlinear adjustment of the ocean to coherent north–south shifts of the atmosphere. The oceanic eddy effects are diagnosed by the dynamical decomposition method adapted for nonstationary external forcing. The main effects of the eddies are an enhancement of the oceanic eastward jet separating the subpolar and subtropical gyres and a weakening of the gyres. The flow-enhancing effect is due to nonlinear rectification driven by fluctuations of the eddy forcing. This is a nonlocal process involving generation of the eddies by the flow instabilities in the western boundary current and the upstream part of the eastward jet. The eddies are advected by the mean current to the east, where they backscatter into the rectified enhancement of the eastward jet. The gyre-weakening effect, which is due to the time-mean buoyancy component of the eddy forcing, is a result of the baroclinic instability of the westward return currents. The diagnosed eddy forcing is parameterized in a non-eddy-resolving ocean model, as a nonstationary random process, in which the corresponding parameters are derived from the control coupled simulation. The key parameter of the random process—its variance—is related to the large-scale flow baroclinicity index. It is shown that the coupled model with the non-eddy-resolving ocean component and the parameterized eddies correctly simulates climatology and low-frequency variability of the control eddy-resolving coupled solution.
  • Preprint
    A highly nonlinear coupled mode of decadal variability in a mid-latitude ocean–atmosphere model
    ( 2006-08-10) Kravtsov, Sergey K. ; Dewar, William K. ; Berloff, Pavel S. ; McWilliams, James C. ; Ghil, M.
    This study examines mid-latitude climate variability in a model that couples turbulent oceanic and atmospheric flows through an active oceanic mixed layer. Intrinsic ocean dynamics of the inertial recirculation regions combines with nonlinear atmospheric sensitivity to sea-surface temperature (SST) anomalies to play a dominant role in the variability of the coupled system. Intrinsic low-frequency variability arises in the model atmosphere; when run in a stand-alone mode, it is characterized by irregular transitions between preferred high-latitude and less frequent low-latitude zonal-flow states. When the atmosphere is coupled to the ocean, the low-latitude state occurrences exhibit a statistically significant signal in a broad 5–15-year band. A similar signal is found in the time series of the model ocean’s energy in this coupled simulation. Accompanying uncoupled ocean-only and atmosphere-only integrations are characterized by a decrease in the decadal-band variability, relative to the coupled integration; their spectra are indistinguishable from a red spectrum. The time scale of the coupled interdecadal oscillation is set by the nonlinear adjustment of the ocean’s inertial recirculations to the high-latitude and low-latitude atmospheric forcing regimes. This adjustment involves, in turn, SST changes resulting in long-term ocean–atmosphere heat-flux anomalies that induce the atmospheric regime transitions.
  • Preprint
    A mechanistic model of mid-latitude decadal climate variability
    ( 2007-08-08) Kravtsov, Sergey K. ; Dewar, William K. ; Ghil, M. ; McWilliams, James C. ; Berloff, Pavel S.
    A simple heuristic model of coupled decadal ocean–atmosphere modes in middle latitudes is developed. Previous studies have treated atmospheric intrinsic variability as a linear stochastic process modified by a deterministic coupling to the ocean. The present paper takes an alternative view: based on observational, as well as process modeling results, it represents this variability in terms of irregular transitions between two anomalously persistent, high-latitude and low-latitude jet-stream states. Atmospheric behavior is thus governed by an equation analogous to that describing the trajectory of a particle in a double-well potential, subject to stochastic forcing. Oceanic adjustment to a positional shift in the atmospheric jet involves persistent circulation anomalies maintained by the action of baroclinic eddies; this process is parameterized in the model as a delayed oceanic response. The associated sea-surface temperature anomalies provide heat fluxes that affect atmospheric circulation by modifying the shape of the double-well potential. If the latter coupling is strong enough, the model’s spectrum exhibits a peak at a periodicity related to the ocean’s eddy-driven adjustment time. A nearly analytical approximation of the coupled model is used to study the sensitivity of this behavior to key model parameters.
  • Article
    Dynamical origin of low-frequency variability in a highly nonlinear midlatitude coupled model
    (American Meteorological Society, 2006-12-15) Kravtsov, Sergey K. ; Berloff, Pavel S. ; Dewar, William K. ; Ghil, M. ; McWilliams, James C.
    A novel mechanism of decadal midlatitude coupled variability, which crucially depends on the nonlinear dynamics of both the atmosphere and the ocean, is presented. The coupled model studied involves quasigeostrophic atmospheric and oceanic components, which communicate with each other via a constant-depth oceanic mixed layer. A series of coupled and uncoupled experiments show that the decadal coupled mode is active across parameter ranges that allow the bimodality of the atmospheric zonal flow to coexist with oceanic turbulence. The latter is most intense in the regions of inertial recirculation (IR). Bimodality is associated with the existence of two distinct anomalously persistent zonal-flow modes, which are characterized by different latitudes of the atmospheric jet stream. The IR reorganizations caused by transitions of the atmosphere from its high- to low-latitude state and vice versa create sea surface temperature anomalies that tend to induce transition to the opposite atmospheric state. The decadal–interdecadal time scale of the resulting oscillation is set by the IR adjustment; the latter depends most sensitively on the oceanic bottom drag. The period T of the nonlinear oscillation is 7–25 yr for the range of parameters explored, with the most realistic parameter values yielding T ≈ 20 yr. Aside from this nonlinear oscillation, an interannual Rossby wave mode is present in all coupled experiments. This coupled mode depends neither on atmospheric bimodality, nor on ocean eddy dynamics; it is analogous to the mode found previously in a channel configuration. Its time scale in the model with a closed ocean basin is set by cross-basin wave propagation and equals 3–5 yr for a basin width comparable with the North Atlantic.
  • Article
    North Atlantic climate variability in coupled models and data
    (Copernicus Publications on behalf of the European Geosciences Union, 2008-01-18) Kravtsov, Sergey K. ; Dewar, William K. ; Ghil, M. ; Berloff, Pavel S. ; McWilliams, James C.
    We show that the observed zonally averaged jet in the Northern Hemisphere atmosphere exhibits two spatial patterns with broadband variability in the decadal and inter-decadal range; these patterns are consistent with an important role of local, mid-latitude ocean–atmosphere coupling. A key aspect of this behaviour is the fundamentally nonlinear bi-stability of the atmospheric jet's latitudinal position, which enables relatively small sea-surface temperature anomalies associated with ocean processes to affect the large-scale atmospheric winds. The wind anomalies induce, in turn, complex three-dimensional anomalies in the ocean's main thermocline; in particular, they may be responsible for recently reported cooling of the upper ocean. Both observed modes of variability, decadal and inter-decadal, have been found in our intermediate climate models. One mode resembles North Atlantic tri-polar sea-surface temperature (SST) patterns described elsewhere. The other mode, with mono-polar SST pattern, is novel; its key aspects include interaction of oceanic turbulence with the large-scale oceanic flow. To the extent these anomalies exist, the interpretation of observed climate variability in terms of natural and human-induced changes will be affected. Coupled mid-latitude ocean-atmosphere modes do, however, suggest some degree of predictability is possible.