Dooley Keven

No Thumbnail Available
Last Name
Dooley
First Name
Keven
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Prochlorococcus extracellular vesicles: molecular composition and adsorption to diverse microbes
    (Society for Applied Microbiology, 2021-11-12) Biller, Steven J. ; Lundeen, Rachel A. ; Hmelo, Laura R. ; Becker, Kevin W. ; Arellano, Aldo A. ; Dooley, Keven ; Heal, Katherine R. ; Carlson, Laura Truxal ; Van Mooy, Benjamin A. S. ; Ingalls, Anitra ; Chisholm, Sallie W.
    Extracellular vesicles are small (~50–200 nm diameter) membrane-bound structures released by cells from all domains of life. While vesicles are abundant in the oceans, their functions, both for cells themselves and the emergent ecosystem, remain a mystery. To better characterize these particles – a prerequisite for determining function – we analysed the lipid, protein, and metabolite content of vesicles produced by the marine cyanobacterium Prochlorococcus. We show that Prochlorococcus exports a diverse array of cellular compounds into the surrounding seawater enclosed within discrete vesicles. Vesicles produced by two different strains contain some materials in common, but also display numerous strain-specific differences, reflecting functional complexity within vesicle populations. The vesicles contain active enzymes, indicating that they can mediate extracellular biogeochemical reactions in the ocean. We further demonstrate that vesicles from Prochlorococcus and other bacteria associate with diverse microbes including the most abundant marine bacterium, Pelagibacter. Together, our data point toward hypotheses concerning the functional roles of vesicles in marine ecosystems including, but not limited to, possibly mediating energy and nutrient transfers, catalysing extracellular biochemical reactions, and mitigating toxicity of reactive oxygen species.
  • Article
    Metabolite diversity among representatives of divergent Prochlorococcus ecotypes
    (American Society for Microbiology, 2023-10-10) Kujawinski, Elizabeth B. ; Braakman, Rogier ; Longnecker, Krista ; Becker, Jamie W. ; Chisholm, Sallie W. ; Dooley, Keven ; Kido Soule, Melissa C. ; Swarr, Gretchen J. ; Halloran, Kathryn H.
    The euphotic zone of the surface ocean contains distinct physical-chemical regimes that vary in light and nutrient concentrations as an inverse function of depth. The most numerous phytoplankter of the mid- and low-latitude ocean is the picocyanobacterium Prochlorococcus, which consists of ecologically distinct subpopulations (i.e., “ecotypes”). Ecotypes have different temperature, light, and nutrient optima and display distinct relative abundances along gradients of these niche dimensions. As a primary producer, Prochlorococcus fixes and releases organic carbon to neighboring microbes as part of the microbial loop. However, little is known about the specific molecules Prochlorococcus accumulates and releases or how these processes vary among its ecotypes. Here, we characterize the metabolite diversity of Prochlorococcus by profiling three ecologically distinct cultured strains: MIT9301, representing a high-light-adapted ecotype dominating shallow tropical and sub-tropical waters; MIT0801, representing a low-light-adapted ecotype found throughout the euphotic zone; and MIT9313, representing a low-light-adapted ecotype relatively most abundant at the base of the euphotic zone. In both intracellular and extracellular metabolite profiles, we observe striking differences across strains in the accumulation and release of molecules, such as the DNA methylating agent S-adenosyl-methionine (intracellular) and the branched-chain amino acids (intracellular) and their precursors (extracellular). While some differences reflect variable genome content across the strains, others likely reflect variable regulation of conserved pathways. In the extracellular profiles, we identify molecules such as pantothenic acid and aromatic amino acids that may serve as currencies in Prochlorococcus’ interactions with neighboring microbes and, therefore, merit further investigation.