Karl Stephen A.

No Thumbnail Available
Last Name
First Name
Stephen A.

Search Results

Now showing 1 - 1 of 1
  • Article
    Is post-bleaching recovery of Acropora hyacinthus on Palau via spread of local kin groups?
    (Springer Verlag, 2020-01-03) Cros, Annick ; Toonen, Robert J. ; Karl, Stephen A.
    Palau suffered massive mortality of reef corals during the 1998 mass bleaching, and understanding recovery from that catastrophic loss is critical to management for future impacts. Many reef species have shown significant genetic structure at small scales while apparently absent at large scales, a pattern often referred to as chaotic genetic patchiness. Here we use hierarchical sampling of population structure scored from a panel of microsatellite markers for the coral Acropora hyacinthus across the islands of Yap, Ngulu and Palau to evaluate hypotheses about the mechanisms of previously described chaotic genetic structure. As with previous studies, we find no isolation-by-distance within or between the three islands and high genetic structure between sites separated by as little as ~ 10 km on Palau. Using kinship among individual colonies, however, we find higher mean pairwise relatedness coefficients among individuals within sampling sites. Comparing population structure among hierarchical sampling scales, we show that the pattern of chaotic genetic patchiness reported previously appears to derive from genetic patches of local kin groups at small spatial scales. Genetic distinction of Palau from neighboring islands and high kinship among individuals within these kinship neighborhoods implies that the coral reefs of Palau apparently recovered through a mosaic of rare thermally tolerant colonies that survived the 1998 mass bleaching and are now spreading and recolonizing reefs as local kin groups. This pattern of recovery on Palau gives us a better understanding for effective coral reef conservation strategies in which protecting these rare survivors wherever they occur, rather than specific areas of reef habitat, is critical to increase coral reef resilience.