Sosa
Oscar A.
Sosa
Oscar A.
No Thumbnail Available
Search Results
Now showing
1 - 5 of 5
-
ArticlePhosphonate cycling supports methane and ethylene supersaturation in the phosphate-depleted western North Atlantic Ocean(Wiley, 2020-05-20) Sosa, Oscar A. ; Burrell, Timothy J. ; Wilson, Samuel T. ; Foreman, Rhea K. ; Karl, David M. ; Repeta, Daniel J.In oligotrophic ocean regions, dissolved organic phosphorus (DOP) plays a prominent role as a source of phosphorus (P) to microorganisms. An important bioavailable component of DOP is phosphonates, organophosphorus compounds with a carbon‐phosphorus (C‐P) bond, which are ubiquitous in high molecular weight dissolved organic matter (HMWDOM). In addition to being a source of P, the degradation of phosphonates by the bacterial C‐P lyase enzymatic pathway causes the release of trace hydrocarbon gases relevant to climate and atmospheric chemistry. In this study, we investigated the roles of phosphate and phosphonate cycling in the production of methane (CH4) and ethylene (C2H4) in the western North Atlantic Ocean, a region that features a transition in phosphate concentrations from coastal to open ocean waters. We observed an inverse relationship between phosphate and the saturation state of CH4 and C2H4 in the water column, and between phosphate and the relative abundance of the C‐P lyase marker gene phnJ . In phosphate‐depleted waters, methylphosphonate and 2‐hydroxyethylphosphonate, the C‐P lyase substrates that yield CH4 and C2H4, respectively, were readily degraded in proportions consistent with their abundance and bioavailability in HMWDOM and with the concentrations of CH4 and C2H4 in the water column. We conclude that phosphonate degradation through the C‐P lyase pathway is an important source and a common production pathway of CH4 and C2H4 in the phosphate‐depleted surface waters of the western North Atlantic Ocean and that phosphate concentration can be an important control on the saturation state of these gases in the upper ocean.
-
ArticleIsolation and characterization of bacteria that degrade phosphonates in marine dissolved organic matter(Frontiers Media, 2017-09-26) Sosa, Oscar A. ; Repeta, Daniel J. ; Ferrón, Sara ; Bryant, Jessica A. ; Mende, Daniel R. ; Karl, David M. ; DeLong, Edward F.Semi-labile dissolved organic matter (DOM) accumulates in surface waters of the oligotrophic ocean gyres and turns over on seasonal to annual timescales. This reservoir of DOM represents an important source of carbon, energy, and nutrients to marine microbial communities but the identity of the microorganisms and the biochemical pathways underlying the cycling of DOM remain largely uncharacterized. In this study we describe bacteria isolated from the North Pacific Subtropical Gyre (NPSG) near Hawaii that are able to degrade phosphonates associated with high molecular weight dissolved organic matter (HMWDOM), which represents a large fraction of semi-labile DOM. We amended dilution-to-extinction cultures with HMWDOM collected from NPSG surface waters and with purified HMWDOM enriched with polysaccharides bearing alkylphosphonate esters. The HMWDOM-amended cultures were enriched in Roseobacter isolates closely related to Sulfitobacter and close relatives of hydrocarbon-degrading bacteria of the Oceanospirillaceae family, many of which encoded phosphonate degradation pathways. Sulfitobacter cultures encoding C-P lyase were able to catabolize methylphosphonate and 2-hydroxyethylphosphonate, as well as the esters of these phosphonates found in native HMWDOM polysaccharides to acquire phosphorus while producing methane and ethylene, respectively. Conversely, growth of these isolates on HMWDOM polysaccharides as carbon source did not support robust increases in cell yields, suggesting that the constituent carbohydrates in HMWDOM were not readily available to these individual isolates. We postulate that the complete remineralization of HMWDOM polysaccharides requires more complex microbial inter-species interactions. The degradation of phosphonate esters and other common substitutions in marine polysaccharides may be key steps in the turnover of marine DOM.
-
ThesisMicrobial cycling of marine high molecular weight dissolved organic matter(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2016-06) Sosa, Oscar A.Microorganisms play a central role mediating biogeochemical cycles in the ocean. Marine dissolved organic matter (DOM) – a reservoir of organic solutes and colloids derived from plankton is a major source of carbon, nutrients, and energy to microbial communities. The biological transformation and remineralization of DOM sustains marine productivity by linking the microbial food web to higher trophic levels (the microbial loop) and exerts important controls over the cycles of carbon and bioessential elements, such as nitrogen and phosphorus, in the sea. Yet insight into the underlying metabolism and reactions driving the degradation of DOM is limited partly because its exact molecular composition is difficult to constrain and appropriate microbial model systems known to decompose marine DOM are lacking. This thesis identifies marine microorganisms that can serve as model systems to study the metabolic pathways and biochemical reactions that control an important ecosystem function, DOM turnover. To accomplish this goal, bacterial isolates were obtained by enriching seawater in dilution-to-extinction culturing experiments with a natural source of DOM, specifically, the high molecular weight (HMW) fraction (>1 kDa nominal molecular weight) obtained by ultrafiltration. Because it is relatively easy to concentrate and it is fairly uniform in its chemical composition across the global ocean and other aquatic environments, HMW DOM has the potential to serve as a model growth substrate to study the biological breakdown of DOM. The phylogeny, genomes, and growth characteristics of the organisms identified through this work indicate that HMW DOM contains bioavailable substrates that may support widespread microbial populations in coastal and open-ocean environments. The availability of ecologically relevant isolates in culture can now serve to test hypothesis emerging from cultivation-independent studies pertaining the potential role of microbial groups in the decomposition of organic matter in the sea. Detailed studies of the biochemical changes exerted on DOM by selected bacterial strains will provide new insight into the processes driving the aerobic microbial food chain in the upper ocean.
-
ArticleHigh molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures(Nature Publishing Group, 2015-05-15) Sosa, Oscar A. ; Gifford, Scott M. ; Repeta, Daniel J. ; DeLong, Edward F.The role of bacterioplankton in the cycling of marine dissolved organic matter (DOM) is central to the carbon and energy balance in the ocean, yet there are few model organisms available to investigate the genes, metabolic pathways, and biochemical mechanisms involved in the degradation of this globally important carbon pool. To obtain microbial isolates capable of degrading semi-labile DOM for growth, we conducted dilution to extinction cultivation experiments using seawater enriched with high molecular weight (HMW) DOM. In total, 93 isolates were obtained. Amendments using HMW DOM to increase the dissolved organic carbon concentration 4x (280 μM) or 10x (700 μM) the ocean surface water concentrations yielded positive growth in 4–6% of replicate dilutions, whereas <1% scored positive for growth in non-DOM-amended controls. The majority (71%) of isolates displayed a distinct increase in cell yields when grown in increasing concentrations of HMW DOM. Whole-genome sequencing was used to screen the culture collection for purity and to determine the phylogenetic identity of the isolates. Eleven percent of the isolates belonged to the gammaproteobacteria including Alteromonadales (the SAR92 clade) and Vibrio. Surprisingly, 85% of isolates belonged to the methylotrophic OM43 clade of betaproteobacteria, bacteria thought to metabolically specialize in degrading C1 compounds. Growth of these isolates on methanol confirmed their methylotrophic phenotype. Our results indicate that dilution to extinction cultivation enriched with natural sources of organic substrates has a potential to reveal the previously unsuspected relationships between naturally occurring organic nutrients and the microorganisms that consume them.
-
ArticleQuantitative transcriptomics reveals the growth- and nutrient-dependent response of a streamlined marine methylotroph to methanol and naturally occurring dissolved organic matter(American Society for Microbiology, 2016-11-22) Gifford, Scott M. ; Becker, Jamie W. ; Sosa, Oscar A. ; Repeta, Daniel J. ; DeLong, Edward F.The members of the OM43 clade of Betaproteobacteria are abundant coastal methylotrophs with a range of carbon-utilizing capabilities. However, their underlying transcriptional and metabolic responses to shifting conditions or different carbon substrates remain poorly understood. We examined the transcriptional dynamics of OM43 isolate NB0046 subjected to various inorganic nutrient, vitamin, and carbon substrate regimes over different growth phases to (i) develop a quantitative model of its mRNA content; (ii) identify transcriptional markers of physiological activity, nutritional state, and carbon and energy utilization; and (iii) identify pathways involved in methanol or naturally occurring dissolved organic matter (DOM) metabolism. Quantitative transcriptomics, achieved through addition of internal RNA standards, allowed for analyses on a transcripts-per-cell scale. This streamlined bacterium exhibited substantial shifts in total mRNA content (ranging from 1,800 to 17 transcripts cell−1 in the exponential and deep stationary phases, respectively) and gene-specific transcript abundances (>1,000-fold increases in some cases), depending on the growth phase and nutrient conditions. Carbon metabolism genes exhibited substantial dynamics, including those for ribulose monophosphate, tricarboxylic acid (TCA), and proteorhodopsin, as well as methanol dehydrogenase (xoxF), which, while always the most abundant transcript, increased from 5 to 120 transcripts cell−1 when cultures were nutrient and vitamin amended. In the DOM treatment, upregulation of TCA cycle, methylcitrate cycle, vitamin, and organic phosphorus genes suggested a metabolic route for this complex mixture of carbon substrates. The genome-wide inventory of transcript abundances produced here provides insight into a streamlined marine bacterium’s regulation of carbon metabolism and energy flow, providing benchmarks for evaluating the activity of OM43 populations in situ.