Hemingway Jordon D.

No Thumbnail Available
Last Name
Hemingway
First Name
Jordon D.
ORCID
0000-0002-8299-2255

Search Results

Now showing 1 - 14 of 14
  • Article
    Revised microbial and photochemical triple-oxygen isotope effects improve marine gross oxygen production estimates
    (Oxford University Press, 2022-10-12) Sutherland, Kevin M. ; Johnston, David T. ; Hemingway, Jordon D. ; Wankel, Scott D. ; Ward, Collin P.
    AbstractThe biogeochemical fluxes that cycle oxygen (O2) play a critical role in regulating Earth’s climate and habitability. Triple-oxygen isotope (TOI) compositions of marine dissolved O2 are considered a robust tool for tracing oxygen cycling and quantifying gross photosynthetic O2 production. This method assumes that photosynthesis, microbial respiration, and gas exchange with the atmosphere are the primary influences on dissolved O2 content, and that they have predictable, fixed isotope effects. Despite its widespread use, there are major elements of this approach that remain uncharacterized, including the TOI dynamics of respiration by marine heterotrophic bacteria and abiotic O2 sinks such as the photochemical oxidation of dissolved organic carbon (DOC). Here, we report the TOI fractionation for O2 utilization by two model marine heterotrophs and by abiotic photo-oxidation of representative terrestrial and coastal marine DOC. We demonstrate that TOI slopes associated with these processes span a significant range of the mass-dependent domain (λ = 0.499 to 0.521). A sensitivity analysis reveals that even under moderate productivity and photo-oxidation scenarios, true gross oxygen production may deviate from previous estimates by more than 20% in either direction. By considering a broader suite of oxygen cycle reactions, our findings challenge current gross oxygen production estimates and highlight several paths forward to better understanding the marine oxygen and carbon cycles.
  • Preprint
    Multiple plant-wax compounds record differential sources and ecosystem structure in large river catchments
    ( 2016-04) Hemingway, Jordon D. ; Schefuß, Enno ; Dinga, Bienvenu J. ; Pryer, Helena V. ; Galy, Valier
    The concentrations, distributions, and stable carbon isotopes (δ13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and δ13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25 – C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7‰ (±1σ standard deviation) spread in δ13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52 – 0.94). In contrast, plant-dominated n-alcohols (C26 – C36) and n-alkanoic acids (C26 – C36) exhibit stronger positive correlations (r = 0.70 – 0.99) between homologue concentrations and depleted δ13C values (individual homologues average ≤ -31.3‰ and -30.8‰, respectively), with lower δ13C variability across chain-lengths (2.6 ± 0.6‰ and 2.0 ± 1.1‰, respectively). All individual plant-wax lipids show little temporal δ13C variability throughout the time-series (1σ ≤ 0.9‰), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19 – 58% of total plant-wax lipids) and n-alkanoic acids (26 – 76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5 – 16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.
  • Preprint
    Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils
    ( 2018-02-15) Hemingway, Jordon D. ; Hilton, Robert G. ; Hovius, Niels ; Eglinton, Timothy I. ; Haghipour, Negar ; Wacker, Lukas ; Chen, Meng-Chiang ; Galy, Valier
    Lithospheric organic carbon (“petrogenic”; OCpetro) is oxidized during exhumation and subsequent erosion within mountain ranges. This process is a significant source of CO2 to the atmosphere over geologic timescales, but the mechanisms that govern oxidation rates in mountain landscapes remain poorly constrained. We demonstrate that, on average, 67 ± 11 % of OCpetro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of Taiwan is oxidized within soils, leading to CO2 emissions of 6.1 – 18.6 t C km-2 yr-1. The molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals that OCpetro remineralization is microbially mediated. Rapid oxidation in mountain soils drives CO2 emissions fluxes that increase with erosion rate, thereby counteracting CO2 drawdown by silicate weathering and biospheric OC burial.
  • Article
    The pulse of the Amazon: fluxes of dissolved organic carbon, nutrients, and ions from the world's largest river
    (American Geophysical Union, 2021-03-15) Drake, Travis W. ; Hemingway, Jordon D. ; Kurek, Martin ; Peucker-Ehrenbrink, Bernhard ; Brown, Kristina A. ; Holmes, Robert M. ; Galy, Valier ; Moura, José M. ; Mitsuya, Miyuki ; Wassenaar, Leonard ; Six, Johan ; Spencer, Robert G. M.
    The Amazon River drains a diverse tropical landscape greater than 6 million km2, culminating in the world's largest export of freshwater and dissolved constituents to the ocean. Here, we present dissolved organic carbon (DOC), organic and inorganic nitrogen (DON, DIN), orthophosphate (PO43−), and major and trace ion concentrations and fluxes from the Amazon River using 26 samples collected over three annual hydrographs. Concentrations and fluxes were predominantly controlled by the annual wet season flood pulse. Average DOC, DON, DIN, and PO43− fluxes (±1 s.d.) were 25.5 (±1.0), 1.14 (±0.05), 0.82 (±0.03), and 0.063 (±0.003) Tg yr−1, respectively. Chromophoric dissolved organic matter absorption (at 350 nm) was strongly correlated with DOC concentrations, resulting in a flux of 74.8 × 106 m−2 yr−1. DOC and DON concentrations positively correlated with discharge while nitrate + nitrite concentrations negatively correlated, suggesting mobilization and dilution responses, respectively. Ammonium, PO43−, and silica concentrations displayed chemostatic responses to discharge. Major and trace ion concentrations displayed clockwise hysteresis (except for chloride, sodium, and rubidium) and exhibited either dilution or chemostatic responses. The sources of weathered cations also displayed seasonality, with the highest proportion of carbonate- and silicate-derived cations occurring during peak and baseflow, respectively. Finally, our seasonally resolved weathering model resulted in an average CO2 consumption yield of (3.55 ± 0.11) × 105 mol CO2 km−2 yr−1. These results represent an updated and temporally refined quantification of dissolved fluxes that highlight the strong seasonality of export from the world's largest river and set a robust baseline against which to gauge future change.
  • Preprint
    Assessing the blank carbon contribution, isotope mass balance, and kinetic isotope fractionation of the Ramped Pyrolysis/Oxidation instrument at NOSAMS
    ( 2017-03) Hemingway, Jordon D. ; Galy, Valier ; Gagnon, Alan R. ; Grant, Katherine E. ; Rosengard, Sarah Z. ; Soulet, Guillaume ; Zigah, Prosper ; McNichol, Ann P.
    We estimate the blank carbon mass over the course of a typical Ramped PyrOx (RPO) analysis (150 to 1000 °C; 5 °C×min-1) to be (3.7 ± 0.6) μg C with an Fm value of 0.555 ± 0.042 and a δ13C value of (-29.0 ± 0.1) ‰ VPDB. Additionally, we provide equations for RPO Fm and δ13C blank corrections, including associated error propagation. By comparing RPO mass-weighted mean and independently measured bulk δ13C values for a compilation of environmental samples and standard reference materials (SRMs), we observe a small yet consistent 13C depletion within the RPO instrument (mean – bulk: μ = -0.8 ‰; ±1σ = 0.9 ‰; n = 66). In contrast, because they are fractionation-corrected by definition, mass-weighted mean Fm values accurately match bulk measurements (mean – bulk: μ = 0.005; ±1σ = 0.014; n = 36). Lastly, we show there exists no significant intra-sample δ13C variability across carbonate SRM peaks, indicating minimal mass-dependent kinetic isotope fractionation during RPO analysis. These data are best explained by a difference in activation energy between 13C- and 12C-containing compounds (13–12ΔE) of 0.3 to 1.8 J×mol-1, indicating that blank and mass-balance corrected RPO δ13C values accurately retain carbon source isotope signals to within 1 to 2‰.
  • Article
    Technical note : an inverse method to relate organic carbon reactivity to isotope composition from serial oxidation
    (Copernicus Publications on behalf of the European Geosciences Union, 2017-11-15) Hemingway, Jordon D. ; Rothman, Daniel H. ; Rosengard, Sarah Z. ; Galy, Valier
    Serial oxidation coupled with stable carbon and radiocarbon analysis of sequentially evolved CO2 is a promising method to characterize the relationship between organic carbon (OC) chemical composition, source, and residence time in the environment. However, observed decay profiles depend on experimental conditions and oxidation pathway. It is therefore necessary to properly assess serial oxidation kinetics before utilizing decay profiles as a measure of OC reactivity. We present a regularized inverse method to estimate the distribution of OC activation energy (E), a proxy for bond strength, using serial oxidation. Here, we apply this method to ramped temperature pyrolysis or oxidation (RPO) analysis but note that this approach is broadly applicable to any serial oxidation technique. RPO analysis directly compares thermal reactivity to isotope composition by determining the E range for OC decaying within each temperature interval over which CO2 is collected. By analyzing a decarbonated test sample at multiple masses and oven ramp rates, we show that OC decay during RPO analysis follows a superposition of parallel first-order kinetics and that resulting E distributions are independent of experimental conditions. We therefore propose the E distribution as a novel proxy to describe OC thermal reactivity and suggest that E vs. isotope relationships can provide new insight into the compositional controls on OC source and residence time.
  • Article
    Climate control on terrestrial biospheric carbon turnover
    (National Academy of Sciences, 2021-02-23) Eglinton, Timothy I. ; Galy, Valier ; Hemingway, Jordon D. ; Feng, Xiaojuan ; Bao, Hongyan ; Blattmann, Thomas M. ; Dickens, Angela F. ; Gies, Hannah ; Giosan, Liviu ; Haghipour, Negar ; Hou, Pengfei ; Lupker, Maarten ; McIntyre, Cameron P. ; Montlucon, Daniel B. ; Peucker-Ehrenbrink, Bernhard ; Ponton, Camilo ; Schefuß, Enno ; Schwab, Melissa S. ; Voss, Britta M. ; Wacker, Lukas ; Wu, Ying ; Zhao, Meixun
    Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.
  • Preprint
    Polyparameter linear free energy relationship for wood char–water sorption coefficients of organic sorbates
    ( 2015-01) Plata, Desiree L. ; Hemingway, Jordon D. ; Gschwend, Philip M.
    Black carbons (BCs), including soots, chars, activated carbons, and engineered nanocarbons, have different surface properties, but we do not know to what extent these affect their sorbent properties. To evaluate this for an environmentally ubiquitous form of BC, biomass char, we probed the surface of a well-studied wood char using 14 sorbates exhibiting diverse functional groups and then fit the data with a polyparameter linear free energy relationship (ppLFER) to assess the importance of the various possible sorbate-char surface interactions. Sorption from water to water-wet char evolved with the sorbate's degree of surface saturation and depended on only a few sorbate parameters: log Kd(L/kg) = [(4.03 ± 0.14) + (-0.15 ± 0.04) log ai)] V + [(-0.28 ± 0.04) log ai)] S + (-5.20 ± 0.21) B where ai is the aqueous saturation of the sorbate i, V is McGowan’s characteristic volume, S reflects polarity, and B represents the electron-donation basicity. As generally observed for activated carbon, the sorbate’s size encouraged sorption from water to the char, while its electron donation/proton acceptance discouraged sorption from water. However, the magnitude and saturation dependence differed significantly from what has been seen for activated carbons, presumably reflecting the unique surface chemistries of these two BC materials and suggesting BC-specific sorption coefficients will yield more accurate assessments of contaminant mobility and bioavailability and evaluation of a site's response to remediation.
  • Article
    Climate oscillations reflected within the microbiome of Arabian Sea sediments
    (Nature Publishing Group, 2017-07-20) Orsi, William D. ; Coolen, Marco J. L. ; Wuchter, Cornelia ; He, Lijun ; More, Kuldeep D. ; Irigoien, Xabier ; Chust, Guillem ; Johnson, Carl G. ; Hemingway, Jordon D. ; Lee, Mitchell ; Galy, Valier ; Giosan, Liviu
    Selection of microorganisms in marine sediment is shaped by energy-yielding electron acceptors for respiration that are depleted in vertical succession. However, some taxa have been reported to reflect past depositional conditions suggesting they have experienced weak selection after burial. In sediments underlying the Arabian Sea oxygen minimum zone (OMZ), we performed the first metagenomic profiling of sedimentary DNA at centennial-scale resolution in the context of a multi-proxy paleoclimate reconstruction. While vertical distributions of sulfate reducing bacteria and methanogens indicate energy-based selection typical of anoxic marine sediments, 5–15% of taxa per sample exhibit depth-independent stratigraphies indicative of paleoenvironmental selection over relatively short geological timescales. Despite being vertically separated, indicator taxa deposited under OMZ conditions were more similar to one another than those deposited in bioturbated intervals under intervening higher oxygen. The genomic potential for denitrification also correlated with palaeo-OMZ proxies, independent of sediment depth and available nitrate and nitrite. However, metagenomes revealed mixed acid and Entner-Dourdoroff fermentation pathways encoded by many of the same denitrifier groups. Fermentation thus may explain the subsistence of these facultatively anaerobic microbes whose stratigraphy follows changing paleoceanographic conditions. At least for certain taxa, our analysis provides evidence of their paleoenvironmental selection over the last glacial-interglacial cycle.
  • Article
    Linking diatom-diazotroph symbioses to nitrogen cycle perturbations and deep-water anoxia: insights from Mediterranean sapropel events
    (Elsevier, 2021-07-30) Elling, Felix J. ; Hemingway, Jordon D. ; Kharbush, Jenan J. ; Becker, Kevin W. ; Polik, Catherine A. ; Pearson, Ann
    Elevated organic matter (OM) export flux promotes marine anoxia, thus increasing carbon sequestration efficiency and decreasing atmospheric carbon dioxide levels. However, the mechanisms that trigger and sustain anoxic events—particularly those associated with nutrient-poor, oligotrophic surface waters—remain poorly constrained. Mediterranean Sea sapropels are well-preserved sediments deposited during episodic anoxic events throughout the Plio-Pleistocene; as such, they may provide unique insight into the biogeochemical and ecological drivers of—and responses to—marine anoxia. Using biomarker distributions, we demonstrate that anaerobic ammonium oxidizing (anammox) bacteria and diazotrophic endosymbionts of mat- and/or raft-forming diatoms were both abundant during sapropel events, particularly in the Ionian and Libyan seas. In these sapropels, the carbon isotope compositions of anammox biomarkers directly capture progressive 13C-depletion in deep-water dissolved inorganic carbon, indicating sustained carbon sequestration. To explain these observations, we propose a reinforcing feedback whereby initial nutrient and/or circulation perturbations promote fixed nitrogen loss via intensified anammox and heterotrophic denitrification, which in turn favors proliferation of rapidly sinking diatom-diazotroph symbiotic consortia, increases OM burial flux, and sustains anoxia. This mechanism resolves the long-standing conundrum that small and buoyant diazotrophs are apparently associated with high OM export during periods of marine anoxia and oligotrophy.
  • Preprint
    Hydrologic controls on seasonal and inter-annual variability of Congo River particulate organic matter source and reservoir age
    ( 2017-06) Hemingway, Jordon D. ; Schefuß, Enno ; Spencer, Robert G. M. ; Dinga, Bienvenu J. ; Eglinton, Timothy I. ; McIntyre, Cameron P. ; Galy, Valier
    We present dissolved organic carbon (DOC) concentrations, particulate organic matter (POM) composition (δ13C, δ15N, ∆14C, N/C), and particulate glycerol dialkyl glycerol tetraether (GDGT) distributions from a 34-month time-series near the mouth of the Congo River. An end-member mixing model using δ13C and N/C indicates that exported POM is consistently dominated by C3 rainforest soil sources, with increasing contribution from C3 vegetation and decreasing contribution from phytoplankton at high discharge. Large C4 inputs are never observed despite covering ≈ 13 % of the catchment. Low and variable ∆14C values during 2011 [annual mean = (-148 ± 82) ‰], when discharge from left-bank tributaries located in the southern hemisphere reached record lows, likely reflect a bias toward pre-aged POM derived from the Cuvette Congolaise swamp forest. In contrast, ∆14C values were stable near -50 ‰ between January and June 2013, when left-bank discharge was highest. We suggest that headwater POM is replaced and/or diluted by C3 vegetation and pre-aged soils during transit through the Cuvette Congolaise, whereas left-bank tributaries export significantly less pre-aged material. GDGT distributions provide further evidence for seasonal and inter-annual variability in soil provenance. The cyclization of branched tetraethers and the GDGT-0 to crenarchaeol ratio are positively correlated with discharge (r ≥ 0.70; p-value ≤ 4.3×10-5) due to the incorporation of swamp-forest soils when discharge from right-bank tributaries located in the northern hemisphere is high. Both metrics reach record lows during 2013, supporting our interpretation of increased left-bank contribution at this time. We conclude that hydrologic variability is a major control of POM provenance in the Congo River Basin and that tropical wetlands can be a significant POM source despite their small geographic coverage.
  • Preprint
    Glacier meltwater and monsoon precipitation drive Upper Ganges Basin dissolved organic matter composition
    (Elsevier, 2019-01-01) Hemingway, Jordon D. ; Spencer, Robert G. M. ; Podgorski, David C. ; Zito, Phoebe ; Sen, Indra S. ; Galy, Valier
    Mountain glaciers store dissolved organic carbon (DOC) that can be exported to river networks and subsequently respired to CO2. Despite this potential importance within the global carbon cycle, the seasonal variability and downstream transport of glacier-derived DOC in mountainous river basins remains largely unknown. To provide novel insight, here we present DOC concentrations and molecular-level dissolved organic matter (DOM) compositions from 22 nested, glaciated catchments (1.4 – 81.8 % glacier cover by area) in the Upper Ganges Basin, Western Himalaya over the course of the Indian summer monsoon (ISM) in 2014. Aliphatic and peptide-like compounds were abundant in glaciated headwaters but were overprinted by soil-derived phenolic, polyphenolic and condensed aromatic material as DOC concentrations increase moving downstream. Across the basin, DOC concentrations and soil-derived compound class contributions decreased sharply from pre- to post-ISM, implying increased relative contribution of glaciated headwater signals as the monsoon progresses. Incubation experiments further revealed a strong compositional control on the fraction of bioavailable DOC (BDOC), with glacier-derived DOC exhibiting the highest bioavailability. We hypothesize that short-term (i.e. in the coming decades) increases in glacier melt flux driven by climate change will further bias exported DOM toward an aliphatic-rich, bioavailable signal, especially during the ISM and post-ISM seasons. In contrast, eventual decreases in glacier melt flux due to mass loss will likely lead to more a soil-like DOM composition and lower bioavailability of exported DOC in the long term.
  • Thesis
    Understanding terrestrial organic carbon export : a time-series approach
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-02) Hemingway, Jordon D.
    Terrestrial organic carbon (OC) erosion, remineralization, transport through river networks, and burial in marine sediments is a major pathway of the global carbon cycle. However, our ability to constrain these processes and fluxes is largely limited by (i) analytical capability and (ii) temporal sampling resolution. To address issue (i), here I discuss methodological advancements and data analysis techniques for the Ramped PyrOx serial oxidation isotope method developed at WHOI. Ramped-temperature pyrolysis/oxidation coupled with the stable carbon (12C, 13C) and radiocarbon (14C) analysis of evolved CO2 is a promising tool for understanding and separating complex OC mixtures. To quantitatively investigate distributions of OC source, reservoir age, and chemical structure contained within a single sample, I developed a kinetic model linking RPO-derived activation energy, 13C composition, and radiocarbon content. This tool provides a novel method to fundamentally address the unknown relationship between OC remineralization rates and chemical structure in various environmental settings. To address issue (ii), I additionally present results from time-series sample sets collected on two end-member systems: the Congo River (Central Africa) and the LiWu River (Taiwan). For the Congo River, bulk and plant-wax-lipid 13C compositions indicate that a majority of particulate OC is consistently derived from downstream, C3-dominated rainforest ecosystems. Furthermore, bulk radiocarbon content and microbial lipid molecular distributions are strongly correlated with discharge, suggesting that pre-aged, swamp-forest-derived soils are preferentially exported when northern hemisphere discharge is highest. Combined, these results provide insight into the relationship between hydrological processes and fluvial carbon export. Lastly, I examined the processes controlling carbon source and flux in a set of soils and time-series fluvial sediments from the LiWu River catchment located in Taiwan. A comparison between bedrock and soil OC content reveals that soils can contain significantly less carbon than the underlying bedrock, suggesting that this material is remineralized to CO2 prior to soil formation. Both the presence of bacterial lipids and a shift toward lower activation energy of 14C-free OC contained in soil saprolite layers indicate that this process is microbially mediated and that microbial respiration of rock-derived OC likely represents a larger geochemical flux than previously thought. The results presented in this thesis therefore provide novel insight into the role of rivers in the global carbon cycle as well as their response to environmental perturbations.
  • Article
    Multi-molecular 14C evidence for mineral control on terrestrial carbon storage and export
    (The Royal Society, 2023-10-09) Gies, Hannah ; Lupker, Maarten ; Galy, Valier ; Hemingway, Jordon D. ; Boehman, Brenna ; Schwab, Melissa S. ; Haghipour, Negar ; Eglinton, Timothy I.
    Compound- and compound class-specific radiocarbon analysis of source-diagnostic ‘biomarker’ molecules has emerged as a powerful tool to gain insights into terrestrial carbon cycling. While most studies thus far have focused on higher plant biomarkers (i.e. plant leaf-wax n-alkanoic acids and n-alkanes, lignin-derived phenols), tracing paedogenic carbon is crucial given the pivotal role of soils in modulating ecosystem carbon turnover and organic carbon (OC) export. Here, we determine the radiocarbon (14C) ages of glycerol dialkyl glycerol tetraethers (GDGTs) in riverine sediments and compare them to those of higher plant biomarkers as well as markers of pyrogenic (fire-derived) carbon (benzene polycarboxylic acids, BPCAs) to assess their potential as tracers of soil turnover and export. GDGT Δ14C follows similar relationships with basin properties as vegetation-derived lignin phenols and leaf-wax n-alkanoic acids, suggesting that the radiocarbon ages of these compounds are significantly impacted by intermittent soil storage. Systematic radiocarbon age offsets are observable between the studied biomarkers, which are likely caused by different mobilization pathways and/or stabilization by mineral association.