Niles
Sydney F.
Niles
Sydney F.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticlePlastic formulation is an emerging control of its photochemical fate in the ocean(American Chemical Society, 2021-09-08) Walsh, Anna N. ; Reddy, Christopher M. ; Niles, Sydney F. ; McKenna, Amy M. ; Hansel, Colleen M. ; Ward, Collin P.Sunlight exposure is a control of long-term plastic fate in the environment that converts plastic into oxygenated products spanning the polymer, dissolved, and gas phases. However, our understanding of how plastic formulation influences the amount and composition of these photoproducts remains incomplete. Here, we characterized the initial formulations and resulting dissolved photoproducts of four single-use consumer polyethylene (PE) bags from major retailers and one pure PE film. Consumer PE bags contained 15–36% inorganic additives, primarily calcium carbonate (13–34%) and titanium dioxide (TiO2; 1–2%). Sunlight exposure consistently increased production of dissolved organic carbon (DOC) relative to leaching in the dark (3- to 80-fold). All consumer PE bags produced more DOC during sunlight exposure than the pure PE (1.2- to 2.0-fold). The DOC leached after sunlight exposure increasingly reflected the 13C and 14C isotopic composition of the plastic. Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry revealed that sunlight exposure substantially increased the number of DOC formulas detected (1.1- to 50-fold). TiO2-containing bags photochemically degraded into the most compositionally similar DOC, with 68–94% of photoproduced formulas in common with at least one other TiO2-containing bag. Conversely, only 28% of photoproduced formulas from the pure PE were detected in photoproduced DOC from the consumer PE. Overall, these findings suggest that plastic formulation, especially TiO2, plays a determining role in the amount and composition of DOC generated by sunlight. Consequently, studies on pure, unweathered polymers may not accurately represent the fates and impacts of the plastics entering the ocean.
-
ArticleHydroxyapatite catalyzed hydrothermal liquefaction transforms food waste from an environmental liability to renewable fuel(Cell Press, 2022-09-16) LeClerc, Heather O. ; Tompsett, Geoffrey A. ; Paulsen, Alex D. ; McKenna, Amy M. ; Niles, Sydney F. ; Reddy, Christopher M. ; Nelson, Robert K. ; Cheng, Feng ; Teixeira, Andrew R. ; Timko, Michael T.Food waste is an abundant and inexpensive resource for the production of renewable fuels. Biocrude yields obtained from hydrothermal liquefaction (HTL) of food waste can be boosted using hydroxyapatite (HAP) as an inexpensive and abundant catalyst. Combining HAP with an inexpensive homogeneous base increased biocrude yield from 14 ± 1 to 37 ± 3%, resulting in the recovery of 49 ± 2% of the energy contained in the food waste feed. Detailed product analysis revealed the importance of fatty-acid oligomerization during biocrude formation, highlighting the role of acid-base catalysts in promoting condensation reactions. Economic and environmental analysis found that the new technology has the potential to reduce US greenhouse gas emissions by 2.6% while producing renewable diesel with a minimum fuel selling price of $1.06/GGE. HAP can play a role in transforming food waste from a liability to a renewable fuel.