Euskirchen Eugenie

No Thumbnail Available
Last Name
Euskirchen
First Name
Eugenie
ORCID
0000-0002-0848-4295

Search Results

Now showing 1 - 5 of 5
  • Preprint
    Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems
    ( 2005-10-07) Euskirchen, Eugenie ; McGuire, A. David ; Kicklighter, David W. ; Zhuang, Qianlai ; Clein, Joy S. ; Dargaville, R. J. ; Dye, D. G. ; Kimball, John S. ; McDonald, Kyle C. ; Melillo, Jerry M. ; Romanovsky, Vladimir ; Smith, N. V.
    In terrestrial high-latitude regions, observations indicate recent changes in snow cover, permafrost, and soil freeze-thaw transitions due to climate change. These modifications may result in temporal shifts in the growing season and the associated rates of terrestrial productivity. Changes in productivity will influence the ability of these ecosystems to sequester atmospheric CO2. We use the Terrestrial Ecosystem Model (TEM), which simulates the soil thermal regime, in addition to terrestrial carbon, nitrogen and water dynamics, to explore these issues over the years 1960-2100 in extratropical regions (30°-90°N). Our model simulations show decreases in snow cover and permafrost stability from 1960 to 2100. Decreases in snow cover agree well with NOAA satellite observations collected between the years 1972-2000, with Pearson rank correlation coefficients between 0.58-0.65. Model analyses also indicate a trend towards an earlier thaw date of frozen soils and the onset of the growing season in the spring by approximately 2-4 days from 1988-2000. Between 1988 and 2000, satellite records yield a slightly stronger trend in thaw and the onset of the growing season, averaging between 5-8 days earlier. In both the TEM simulations and satellite records, trends in day of freeze in the autumn are weaker, such that overall increases in growing season length are due primarily to earlier thaw. Although regions with the longest snow cover duration displayed the greatest increase in growing season length, these regions maintained smaller increases in productivity and heterotrophic respiration than those regions with shorter duration of snow cover and less of an increase in growing season length. Concurrent with increases in growing season length, we found a reduction in soil carbon and increases in vegetation carbon, with greatest losses of soil carbon occurring in those areas with more vegetation, but simulations also suggest that this trend could reverse in the future. Our results reveal noteworthy changes in snow, permafrost, growing season length, productivity, and net carbon uptake, indicating that prediction of terrestrial carbon dynamics from one decade to the next will require that large-scale models adequately take into account the corresponding changes in soil thermal regimes.
  • Preprint
    Long-term release of carbon dioxide from Arctic tundra ecosystems in Alaska
    ( 2016-11) Euskirchen, Eugenie ; Bret-Harte, M. Syndonia ; Shaver, Gaius R. ; Edgar, Colin W. ; Romanovsky, Vladimir
    Releases of the greenhouse gases carbon dioxide (CO2) and methane (CH4) from thawing permafrost are expected to be among the largest feedbacks to climate from arctic ecosystems. However, the current net carbon (C) balance of terrestrial arctic ecosystems is unknown. Recent studies suggest that these ecosystems are sources, sinks, or approximately in balance at present. This uncertainty arises because there are few long-term continuous measurements of arctic tundra CO2 fluxes over the full annual cycle. Here, we describe a pattern of CO2 loss based on the longest continuous record of direct measurements of CO2 fluxes in the Alaskan Arctic, from two representative tundra ecosystems, wet sedge and heath tundra. We also report on a shorter time series of continuous measurements from a third ecosystem, tussock tundra. The amount of CO2 loss from both heath and wet sedge ecosystems was related to the timing of freeze-up of the soil active layer in the fall. Wet sedge tundra lost the most CO2 during the anomalously warm autumn periods of September – December 2013 - 2015, with CH4 emissions contributing little to the overall C budget. Losses of C translated to approximately 4.1% and 1.4% of the total soil C stocks in active layer of the wet sedge and heath tundra, respectively, from 2008 – 2015. Increases in air temperature and soil temperatures at all depths may trigger a new trajectory of CO2 release, which will be a significant feedback to further warming if it is representative of larger areas of the Arctic.
  • Article
    Shallow soils are warmer under trees and tall shrubs across arctic and boreal ecosystems
    (IOP Publishing, 2020-12-18) Kropp, Heather ; Loranty, Michael M. ; Natali, Susan M. ; Kholodov, Alexander L. ; Rocha, Adrian V. ; Myers-Smith, Isla H. ; Abbott, Benjamin W. ; Abermann, Jakob ; Blanc-Betes, Elena ; Blok, Daan ; Blume-Werry, Gesche ; Boike, Julia ; Breen, Amy L. ; Cahoon, Sean M. P. ; Christiansen, Casper T. ; Douglas, Thomas A. ; Epstein, Howard E. ; Frost, Gerald V. ; Goeckede, Mathias ; Høye, Toke T. ; Mamet, Steven D. ; O’Donnell, Jonathan A. ; Olefeldt, David ; Phoenix, Gareth K. ; Salmon, Verity G. ; Sannel, A. Britta K. ; Smith, Sharon L. ; Sonnentag, Oliver ; Smith Vaughn, Lydia ; Williams, Mathew ; Elberling, Bo ; Gough, Laura ; Hjort, Jan ; Lafleur, Peter M. ; Euskirchen, Eugenie ; Heijmans, Monique M. P. D. ; Humphreys, Elyn ; Iwata, Hiroki ; Jones, Benjamin M. ; Jorgenson, M. Torre ; Grünberg, Inge ; Kim, Yongwon ; Laundre, James A. ; Mauritz, Marguerite ; Michelsen, Anders ; Schaepman-Strub, Gabriela ; Tape, Ken D. ; Ueyama, Masahito ; Lee, Bang-Yong ; Langley, Kirsty ; Lund, Magnus
    Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (>40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.
  • Article
    Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska
    (Ecological Society of America, 2012-01-19) Euskirchen, Eugenie ; Bret-Harte, M. Syndonia ; Scott, G. J. ; Edgar, C. ; Shaver, Gaius R.
    Understanding the carbon dioxide and water fluxes in the Arctic is essential for accurate assessment and prediction of the responses of these ecosystems to climate change. In the Arctic, there have been relatively few studies of net CO2, water, and energy exchange using micrometeorological methods due to the difficulty of performing these measurements in cold, remote regions. When these measurements are performed, they are usually collected only during the short summer growing season. We established eddy covariance flux towers in three representative Alaska tundra ecosystems (heath tundra, tussock tundra, and wet sedge tundra), and have collected CO2, water, and energy flux data continuously for over three years (September 2007–May 2011). In all ecosystems, peak CO2 uptake occurred during July, with accumulations of 51–95 g C/m2 during June–August. The timing of the switch from CO2 source to sink in the spring appears to be regulated by the number of growing degree days early in the season, indicating that warmer springs may promote increased net CO2 uptake. However, this increased uptake in the spring may be lost through warmer temperatures in the late growing season that promote respiration, if this respiration is not impeded by large amounts of precipitation or cooler temperatures. Net CO2 accumulation during the growing season was generally lost through respiration during the snow covered months of September–May, turning the ecosystems into net sources of CO2 over measurement period. The water balance from June to August at the three ecosystems was variable, with the most variability observed in the heath tundra, and the least in the tussock tundra. These findings underline the importance of collecting data over the full annual cycle and across multiple types of tundra ecosystems in order to come to a more complete understanding of CO2 and water fluxes in the Arctic.
  • Article
    ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales
    (Copernicus Publications on behalf of the European Geosciences Union, 2018-02-05) Qiu, Chunjing ; Zhu, Dan ; Ciais, Philippe ; Guenet, Bertrand ; Krinner, Gerhard ; Peng, Shushi ; Aurela, Mika ; Bernhofer, Christian ; Brümmer, Christian ; Bret-Harte, M. Syndonia ; Chu, Housen ; Chen, Jiquan ; Desai, Ankur R. ; Dušek, Jiˇrí ; Euskirchen, Eugenie ; Fortuniak, Krzysztof ; Flanagan, Lawrence B. ; Friborg, Thomas ; Grygoruk, Mateusz ; Gogo, Sébastien ; Grünwald, Thomas ; Hansen, Birger U. ; Holl, David ; Humphreys, Elyn ; Hurkuck, Miriam ; Kiely, Gerard ; Klatt, Janina ; Kutzbach, Lars ; Largeron, Chloé ; Laggoun-Défarg, Fatima ; Lund, Magnus ; Lafleur, Peter M. ; Li, Xuefei ; Mammarella, Ivan ; Merbold, Lutz ; Nilsson, Mats B. ; Olejnik, Janusz ; Ottosson-Löfvenius, Mikaell ; Oechel, Walter ; Parmentier, Frans-Jan W. ; Peichl, Matthias ; Pirk, Norbert ; Peltola, Olli ; Pawlak, Włodzimierz ; Rasse, Daniel ; Rinne, Janne ; Shaver, Gaius R. ; Schmid, Hans Peter ; Sottocornola, Matteo ; Steinbrecher, Rainer ; Sachs, Torsten ; Urbaniak, Marek ; Zona, Donatella ; Ziemblinska, Klaudia
    Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5° grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r2 =  0.76; Nash–Sutcliffe modeling efficiency, MEF  =  0.76) and ecosystem respiration (ER, r2 =  0.78, MEF  =  0.75), with lesser accuracy for latent heat fluxes (LE, r2 =  0.42, MEF  =  0.14) and and net ecosystem CO2 exchange (NEE, r2 =  0.38, MEF  =  0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r2 values (0.57–0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r2 values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r2 < 0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized Vcmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average Vcmax value.