Wang
David T.
Wang
David T.
No Thumbnail Available
Search Results
Now showing
1 - 6 of 6
-
PreprintExperimental investigation on the controls of clumped isotopologue and hydrogen isotope ratios in microbial methane( 2018-06-14) Gruen, Danielle S. ; Wang, David T. ; Könneke, Martin ; Topçuoğlu, Begüm D ; Stewart, Lucy C. ; Goldhammer, Tobias ; Holden, James F. ; Hinrichs, Kai-Uwe ; Ono, ShuheiThe abundance of methane isotopologues with two rare isotopes (e.g., 13CH3D) has been proposed as a tool to estimate the temperature at which methane is formed or thermally equilibrated. It has been shown, however, that microbial methane from surface environments and from laboratory cultures is characterized by low 13CH3D abundance, corresponding to anomalously high apparent 13CH3D equilibrium temperatures. We carried out a series of batch culture experiments to investigate the origin of the non-equilibrium signals in microbial methane by exploring a range of metabolic pathways, growth temperatures, and hydrogen isotope compositions of the media. We found that thermophilic methanogens (Methanocaldococcus jannaschii, Methanothermococcus thermolithotrophicus, and Methanocaldococcus bathoardescens) grown on H2+CO2 at temperatures between 60 and 80°C produced methane with Δ13CH3D values (defined as the deviation from stochastic abundance) of 0.5 to 2.5‰, corresponding to apparent 13CH3D equilibrium temperatures of 200 to 600°C. Mesophilic methanogens (Methanosarcina barkeri and Methanosarcina mazei) grown on H2+CO2, acetate, or methanol produced methane with consistently low Δ13CH3D values, down to -5.2‰. Closed system effects can explain part of the non-equilibrium signals for methane from thermophilic methanogens. Experiments with M. barkeri using D-spiked water or D-labeled acetate (CD3COO-) indicate that 1.6 to 1.9 out of four H atoms in methane originate from water, but Δ13CH3D values of product methane only weakly correlate with the D/H ratio of medium water. Our experimental results demonstrate that low Δ13CH3D values are not specific to the metabolic pathways of methanogenesis, suggesting that they could be produced during enzymatic reactions common in the three methanogenic pathways, such as the reduction of methyl-coenzyme M. Nonetheless C-H bonds inherited from precursor methyl groups may also carry part of non-equilibrium signals.
-
PreprintNonequilibrium clumped isotope signals in microbial methane( 2015-02-09) Wang, David T. ; Gruen, Danielle S. ; Lollar, Barbara Sherwood ; Hinrichs, Kai-Uwe ; Stewart, Lucy C. ; Holden, James F. ; Hristov, Alexander N. ; Pohlman, John W. ; Morrill, Penny L. ; Konneke, Martin ; Delwiche, Kyle B. ; Reeves, Eoghan P. ; Sutcliffe, Chelsea N. ; Ritter, Daniel J. ; Seewald, Jeffrey S. ; McIntosh, Jennifer C. ; Hemond, Harold F. ; Kubo, Michael D. Y. ; Cardace, Dawn ; Hoehler, Tori M. ; Ono, ShuheiMethane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply-substituted “clumped” isotopologues, e.g., 13CH3D, has recently emerged as a proxy for determining methane-formation temperatures; however, the impact of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.
-
PreprintClumped isotopologue constraints on the origin of methane at seafloor hot springs( 2017-11-12) Wang, David T. ; Reeves, Eoghan P. ; McDermott, Jill M. ; Seewald, Jeffrey S. ; Ono, ShuheiHot-spring fluids emanating from deep-sea vents hosted in unsedimented ultramafic and mafic rock commonly contain high concentrations of methane. Multiple hypotheses have been proposed for the origin(s) of this methane, ranging from synthesis via reduction of aqueous inorganic carbon (ΣCO2) during active fluid circulation to leaching of methane-rich fluid inclusions from plutonic rocks of the oceanic crust. To further resolve the process(es) responsible for methane generation in these systems, we determined the relative abundances of several methane isotopologues (including 13CH3D, a “clumped” isotopologue containing two rare isotope substitutions) in hot-spring source fluids sampled from four geochemically-distinct hydrothermal vent fields (Rainbow, Von Damm, Lost City, and Lucky Strike). Apparent equilibrium temperatures retrieved from methane clumped isotopologue analyses average 310−42 +53 °C, with no apparent relation to the wide range of fluid temperatures (96 to 370 °C) and chemical compositions (pH, [H2], [ΣCO2], [CH4]) represented. Combined with very similar bulk stable isotope ratios (13C/12C and D/H) of methane across the suite of hydrothermal fluids, all available geochemical and isotopic data suggest a common mechanism of methane generation at depth that is disconnected from active fluid circulation. Attainment of equilibrium amongst methane isotopologues at temperatures of ca. 270 to 360 °C is compatible with the thermodynamically-favorable reduction of CO2 to CH4 at temperatures at or below ca. 400 °C under redox conditions characterizing intrusive rocks derived from sub-ridge melts. Collectively, the observations support a model where methane-rich aqueous fluids, known to be trapped in rocks of the oceanic lithosphere, are liberated from host rocks during hydrothermal circulation and perhaps represent the major source of methane venting with thermal waters at unsedimented hydrothermal fields. The results also provide further evidence that water-rock reactions occurring at temperatures lower than 200 °C do not contribute significantly to the quantities of methane venting at mid-ocean ridge hot springs.
-
PreprintFractionation of the methane isotopologues 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by Methylococcus capsulatus (Bath)( 2016-07) Wang, David T. ; Welander, Paula V. ; Ono, ShuheiAerobic oxidation of methane plays a major role in reducing the amount of methane emitted to the atmosphere from freshwater and marine settings. We cultured an aerobic methanotroph, Methylococcus capsulatus (Bath) at 30 and 37 °C, and determined the relative abundance of 12CH4, 13CH4, 12CH3D, and 13CH3D (a doubly-substituted, or “clumped” isotopologue of methane) to characterize the clumped isotopologue effect associated with aerobic methane oxidation. In batch culture, the residual methane became enriched in 13C and D relative to starting methane, with D/H fractionation a factor of 9.14 (Dε/13ε) larger than that of 13C/12C. As oxidation progressed, the Δ13CH3D value (a measure of the excess in abundance of 13CH3D relative to a random distribution of isotopes among isotopologues) of residual methane decreased. The isotopologue fractionation factor for 13CH3D/12CH4 was found to closely approximate the product of the measured fractionation factors for 13CH4/12CH4 and 12CH3D/12CH4 (i.e., 13C/12C and D/H). The results give insight into enzymatic reversibility in the aerobic methane oxidation pathway. Based on the experimental data, a mathematical model was developed to predict isotopologue signatures expected for methane in the environment that has been partially-oxidized by aerobic methanotrophy. Measurement of methane clumped isotopologue abundances can be used to distinguish between aerobic methane oxidation and alternative methane-cycling processes.
-
ThesisThe geochemistry of methane isotopologues(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-06) Wang, David T.This thesis documents the origin, distribution, and fate of methane and several of its isotopic forms on Earth. Using observational, experimental, and theoretical approaches, I illustrate how the relative abundances of 12CH4, 13CH4, 12CH3D, and 13CH3D record the formation, transport, and breakdown of methane in selected settings. Chapter 2 reports precise determinations of 13CH3D, a “clumped” isotopologue of methane, in samples collected from various settings representing many of the major sources and reservoirs of methane on Earth. The results show that the information encoded by the abundance of 13CH3D enables differentiation of methane generated by microbial, thermogenic, and abiogenic processes. A strong correlation between clumped- and hydrogen-isotope signatures in microbial methane is identified and quantitatively linked to the availability of H2 and the reversibility of microbially-mediated methanogenesis in the environment. Determination of 13CH3D in combination with hydrogen-isotope ratios of methane and water provides a sensitive indicator of the extent of C–H bond equilibration, enables fingerprinting of methane-generating mechanisms, and in some cases, supplies direct constraints for locating the waters from which migrated gases were sourced. Chapter 3 applies this concept to constrain the origin of methane in hydrothermal fluids from sediment-poor vent fields hosted in mafic and ultramafic rocks on slow- and ultraslow-spreading mid-ocean ridges. The data support a hypogene model whereby methane forms abiotically within plutonic rocks of the oceanic crust at temperatures above ca. 300 C during respeciation of magmatic volatiles, and is subsequently extracted during active, convective hydrothermal circulation. Chapter 4 presents the results of culture experiments in which methane is oxidized in the presence of O2 by the bacterium Methylococcus capsulatus strain Bath. The results show that the clumped isotopologue abundances of partially-oxidized methane can be predicted from knowledge of 13C/12C and D/H isotope fractionation factors alone.
-
PreprintIncorporation of water-derived hydrogen into methane during artificial maturation of source rock under hydrothermal conditions(Elsevier, 2022-08-12) Wang, David T. ; Seewald, Jeffrey S. ; Reeves, Eoghan P. ; Ono, Shuhei ; Sylva, Sean P.To investigate the origin of Csingle bondH bonds in thermogenic methane (CH4), a solvent-extracted sample of organic-rich Eagle Ford shale was reacted with heavy water (D2O) under hydrothermal conditions (350 bar) in a flexible Au-TiO2 cell hydrothermal apparatus at a water-to-rock ratio of approximately 5:1. Temperature was increased from 200 to 350 °C over the course of one month and the concentrations of aqueous species and methane isotopologues were quantified as a function of time. In general, production of hydrogen, CO2, alkanes, and alkenes increased with time and temperature. Methane formed during the early stages of the experiment at 200 °C was primarily C1H4 with some CH3D. With progressively higher temperatures, increasing proportions of deuterated isotopologues were produced. Near the end of the experiment, the concentration of CD4 exceeded that of all other isotopologues combined. These results suggest that competition between rates of kerogen-water isotopic exchange and natural gas generation may govern the D/H ratio of thermogenic gases. Furthermore, hydrogenation of kerogen by water may be responsible for hydrocarbon yields in excess of those predicted by conventional models of source rock maturation in which hydrocarbon generation is limited by the amount of organically bonded hydrogen.