Chen Zhao

No Thumbnail Available
Last Name
Chen
First Name
Zhao
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Tidal and thermal stresses drive seismicity along a major Ross Ice Shelf rift
    (American Geophysical Union, 2019-05-23) Olinger, Seth D. ; Lipovsky, Bradley P. ; Wiens, Douglas A. ; Aster, Richard C. ; Bromirski, Peter D. ; Chen, Zhao ; Gerstoft, Peter ; Nyblade, Andrew A. ; Stephen, Ralph A.
    Understanding deformation in ice shelves is necessary to evaluate the response of ice shelves to thinning. We study microseismicity associated with ice shelf deformation using nine broadband seismographs deployed near a rift on the Ross Ice Shelf. From December 2014 to November 2016, we detect 5,948 icequakes generated by rift deformation. Locations were determined for 2,515 events using a least squares grid‐search and double‐difference algorithms. Ocean swell, infragravity waves, and a significant tsunami arrival do not affect seismicity. Instead, seismicity correlates with tidal phase on diurnal time scales and inversely correlates with air temperature on multiday and seasonal time scales. Spatial variability in tidal elevation tilts the ice shelf, and seismicity is concentrated while the shelf slopes downward toward the ice front. During especially cold periods, thermal stress and embrittlement enhance fracture along the rift. We propose that thermal stress and tidally driven gravitational stress produce rift seismicity with peak activity in the winter.
  • Article
    Ross ice shelf icequakes associated with ocean gravity wave activity
    (American Geophysical Union, 2019-08-01) Chen, Zhao ; Bromirski, Peter D. ; Gerstoft, Peter ; Stephen, Ralph A. ; Lee, Won Sang ; Yun, Sukyoung ; Olinger, Seth D. ; Aster, Richard C. ; Wiens, Douglas A. ; Nyblade, Andrew A.
    Gravity waves impacting ice shelves illicit a suite of responses that can affect ice shelf integrity. Broadband seismometers deployed on the Ross Ice Shelf, complemented by a near‐icefront seafloor hydrophone, establish the association of strong icequake activity with ocean gravity wave amplitudes (AG) below 0.04 Hz. The Ross Ice Shelf‐front seismic vertical displacement amplitudes (ASV) are well correlated with AG, allowing estimating the frequency‐dependent transfer function from gravity wave amplitude to icefront vertical displacement amplitude (TGSV(f)). TGSV(f) is 0.6–0.7 at 0.001–0.01 Hz but decreases rapidly at higher frequencies. Seismicity of strong icequakes exhibits spatial and seasonal associations with different gravity wave frequency bands, with the strongest icequakes observed at the icefront primarily during the austral summer when sea ice is minimal and swell impacts are strongest.
  • Article
    Ocean-excited plate waves in the Ross and Pine Island Glacier ice shelves
    (Cambridge University Press, 2018-09-12) Chen, Zhao ; Bromirski, Peter D. ; Gerstoft, Peter ; Stephen, Ralph A. ; Wiens, Douglas A. ; Aster, Richard C. ; Nyblade, Andrew A.
    Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of grounded ice loss. Long-period gravity-wave impacts excite vibrations in ice shelves that can expand pre-existing fractures and trigger iceberg calving. To investigate the spatial amplitude variability and propagation characteristics of these vibrations, a 34-station broadband seismic array was deployed on the Ross Ice Shelf (RIS) from November 2014 to November 2016. Two types of ice-shelf plate waves were identified with beamforming: flexural-gravity waves and extensional Lamb waves. Below 20 mHz, flexural-gravity waves dominate coherent signals across the array and propagate landward from the ice front at close to shallow-water gravity-wave speeds (~70 m s−1). In the 20–100 mHz band, extensional Lamb waves dominate and propagate at phase speeds ~3 km s−1. Flexural-gravity and extensional Lamb waves were also observed by a 5-station broadband seismic array deployed on the Pine Island Glacier (PIG) ice shelf from January 2012 to December 2013, with flexural wave energy, also detected at the PIG in the 20–100 mHz band. Considering the ubiquitous presence of storm activity in the Southern Ocean and the similar observations at both the RIS and the PIG ice shelves, it is likely that most, if not all, West Antarctic ice shelves are subjected to similar gravity-wave excitation.
  • Article
    Tsunami and infragravity waves impacting Antarctic ice shelves
    (John Wiley & Sons, 2017-07-20) Bromirski, Peter D. ; Chen, Zhao ; Stephen, Ralph A. ; Gerstoft, Peter ; Arcas, Diego R. ; Diez, Anja ; Aster, Richard C. ; Wiens, Douglas A. ; Nyblade, Andrew A.
    The responses of the Ross Ice Shelf (RIS) to the 16 September 2015 8.3 (Mw) Chilean earthquake tsunami (>75 s period) and to oceanic infragravity (IG) waves (50–300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2016. Here we show that tsunami and IG-generated signals within the RIS propagate at gravity wave speeds (∼70 m/s) as water-ice coupled flexural-gravity waves. IG band signals show measureable attenuation away from the shelf front. The response of the RIS to Chilean tsunami arrivals is compared with modeled tsunami forcing to assess ice shelf flexural-gravity wave excitation by very long period (VLP; >300 s) gravity waves. Displacements across the RIS are affected by gravity wave incident direction, bathymetry under and north of the shelf, and water layer and ice shelf thicknesses. Horizontal displacements are typically about 10 times larger than vertical displacements, producing dynamical extensional motions that may facilitate expansion of existing fractures. VLP excitation is continuously observed throughout the year, with horizontal displacements highest during the austral winter with amplitudes exceeding 20 cm. Because VLP flexural-gravity waves exhibit no discernable attenuation, this energy must propagate to the grounding zone. Both IG and VLP band flexural-gravity waves excite mechanical perturbations of the RIS that likely promote tabular iceberg calving, consequently affecting ice shelf evolution. Understanding these ocean-excited mechanical interactions is important to determine their effect on ice shelf stability to reduce uncertainty in the magnitude and rate of global sea level rise.