Brady Scott T.

No Thumbnail Available
Last Name
Brady
First Name
Scott T.
ORCID

Search Results

Now showing 1 - 16 of 16
  • Preprint
    Is axonal degeneration a key early event in Parkinson’s disease?
    ( 2016-06) Kurowska, Zuzanna ; Kordower, Jeffrey H. ; Stoessl, A Jon ; Burke, Robert E. ; Brundin, Patrik ; Yue, Zhenyu ; Brady, Scott T. ; Milbrandt, Jeffrey ; Trapp, Bruce D. ; Sherer, Todd B. ; Medicetty, Satish
    Recent research suggests that in Parkinson’s disease the long, thin and unmyelinated axons of dopaminergic neurons degenerate early in the disease process. We organized a workshop entitled ‘Axonal Pathology in Parkinson’s disease’, on March 23rd, 2016, in Cleveland, Ohio with the goals of summarizing the state-of-the-art and defining key gaps in knowledge. A group of eight research leaders discussed new developments in clinical pathology, functional imaging, animal models, and mechanisms of degeneration including neuroinflammation, autophagy and axonal transport deficits. While the workshop focused on PD, comparisons were made to other neurological conditions where axonal degeneration is well recognized.
  • Preprint
    The amino terminus of tau inhibits kinesin-dependent axonal transport: Implications for filament toxicity
    ( 2008-04) LaPointe, Nichole E. ; Morfini, Gerardo A. ; Pigino, Gustavo F. ; Gaisina, Irina N. ; Kozikowski, Alan P. ; Binder, Lester I. ; Brady, Scott T.
    The neuropathology of Alzheimer’s disease (AD) and other tauopathies is characterized by filamentous deposits of the microtubule-associated protein tau, but the relationship between tau polymerization and neurotoxicity is unknown. Here, we examined effects of filamentous tau on fast axonal transport (FAT) using isolated squid axoplasm. Monomeric and filamentous forms of recombinant human tau were perfused in axoplasm, and their effects on kinesin- and dyneindependent FAT rates evaluated by video microscopy. While perfusion of monomeric tau at physiological concentrations showed no effect, tau filaments at the same concentrations selectively inhibited anterograde (kinesin-dependent) FAT, triggering the release of conventional kinesin from axoplasmic vesicles. Pharmacological experiments indicated that the effect of tau filaments on FAT is mediated by protein phosphatase 1 (PP1) and glycogen synthase kinase-3 (GSK-3) activities. Moreover, deletion analysis suggested that these effects depend on a conserved 18-amino acid sequence at the amino terminus of tau. Interestingly, monomeric tau isoforms lacking the C-terminal half of the molecule (including the microtubule binding region) recapitulated the effects of full-length filamentous tau. Our results suggest that pathological tau aggregation contributes to neurodegeneration by altering a regulatory pathway for FAT.
  • Article
    Tau: a signaling hub protein
    (Frontiers Media, 2021-03-19) Mueller, Rebecca L. ; Combs, Benjamin ; Alhadidy, Mohammed M. ; Brady, Scott T. ; Morfini, Gerardo A. ; Kanaan, Nicholas M.
    Over four decades ago, in vitro experiments showed that tau protein interacts with and stabilizes microtubules in a phosphorylation-dependent manner. This observation fueled the widespread hypotheses that these properties extend to living neurons and that reduced stability of microtubules represents a major disease-driving event induced by pathological forms of tau in Alzheimer’s disease and other tauopathies. Accordingly, most research efforts to date have addressed this protein as a substrate, focusing on evaluating how specific mutations, phosphorylation, and other post-translational modifications impact its microtubule-binding and stabilizing properties. In contrast, fewer efforts were made to illuminate potential mechanisms linking physiological and disease-related forms of tau to the normal and pathological regulation of kinases and phosphatases. Here, we discuss published work indicating that, through interactions with various kinases and phosphatases, tau may normally act as a scaffolding protein to regulate phosphorylation-based signaling pathways. Expanding on this concept, we also review experimental evidence linking disease-related tau species to the misregulation of these pathways. Collectively, the available evidence supports the participation of tau in multiple cellular processes sustaining neuronal and glial function through various mechanisms involving the scaffolding and regulation of selected kinases and phosphatases at discrete subcellular compartments. The notion that the repertoire of tau functions includes a role as a signaling hub should widen our interpretation of experimental results and increase our understanding of tau biology in normal and disease conditions.
  • Article
    Frontotemporal lobar dementia mutant tau impairs axonal transport through a protein phosphatase 1γ-dependent mechanism
    (Society for Neuroscience, 2021-10-04) Combs, Benjamin ; Christensen, Kyle R. ; Richards, Collin ; Kneynsberg, Andrew ; Mueller, Rebecca L. ; Morris, Sarah L. ; Morfini, Gerardo A. ; Brady, Scott T. ; Kanaan, Nicholas M.
    Pathologic tau modifications are characteristic of Alzheimer's disease and related dementias, but mechanisms of tau toxicity continue to be debated. Inherited mutations in tau cause early onset frontotemporal lobar dementias (FTLD-tau) and are commonly used to model mechanisms of tau toxicity in tauopathies. Previous work in the isolated squid axoplasm model demonstrated that several pathogenic forms of tau inhibit axonal transport through a mechanism involving activation of protein phosphatase 1 (PP1). Here, we determined that P301L and R5L FTLD mutant tau proteins elicit a toxic effect on axonal transport as monomeric proteins. We evaluated interactions of wild-type or mutant tau with specific PP1 isoforms (α, β, and γ) to examine how the interaction contributes to this toxic effect using primary rat hippocampal neurons from both sexes. Pull-down and bioluminescence resonance energy transfer experiments revealed selective interactions of wild-type tau with PP1α and PP1γ isoforms, but not PP1β, which were significantly increased by the P301L tau mutation. The results from proximity ligation assays confirmed the interaction in primary hippocampal neurons. Moreover, expression of FTLD-linked mutant tau in these neurons enhanced levels of active PP1, also increasing the pausing frequency of fluorescently labeled vesicles in both anterograde and retrograde directions. Knockdown of PP1γ, but not PP1α, rescued the cargo-pausing effects of P301L and R5L tau, a result replicated by deleting a phosphatase-activating domain in the amino terminus of P301L tau. These findings support a model of tau toxicity involving aberrant activation of a specific PP1γ-dependent pathway that disrupts axonal transport in neurons.
  • Article
    Defined tau phosphospecies differentially inhibit fast axonal transport through activation of two independent signaling pathways
    (Frontiers Media, 2021-01-25) Morris, Sarah L. ; Tsai, Ming-Ying ; Aloe, Sarah ; Bechberger, Karin ; König, Svenja ; Morfini, Gerardo A. ; Brady, Scott T.
    Tau protein is subject to phosphorylation by multiple kinases at more than 80 different sites. Some of these sites are associated with tau pathology and neurodegeneration, but other sites are modified in normal tau as well as in pathological tau. Although phosphorylation of tau at residues in the microtubule-binding repeats is thought to reduce tau association with microtubules, the functional consequences of other sites are poorly understood. The AT8 antibody recognizes a complex phosphoepitope site on tau that is detectable in a healthy brain but significantly increased in Alzheimer’s disease (AD) and other tauopathies. Previous studies showed that phosphorylation of tau at the AT8 site leads to exposure of an N-terminal sequence that promotes activation of a protein phosphatase 1 (PP1)/glycogen synthase 3 (GSK3) signaling pathway, which inhibits kinesin-1-based anterograde fast axonal transport (FAT). This finding suggests that phosphorylation may control tau conformation and function. However, the AT8 includes three distinct phosphorylated amino acids that may be differentially phosphorylated in normal and disease conditions. To evaluate the effects of specific phosphorylation sites in the AT8 epitope, recombinant, pseudophosphorylated tau proteins were perfused into the isolated squid axoplasm preparation to determine their effects on axonal signaling pathways and FAT. Results from these studies suggest a mechanism where specific phosphorylation events differentially impact tau conformation, promoting activation of independent signaling pathways that differentially affect FAT. Implications of findings here to our understanding of tau function in health and disease conditions are discussed.
  • Article
    The NF2 tumor suppressor regulates microtubule-based vesicle trafficking via a novel Rac, MLK and p38SAPK pathway
    (Nature Publishing Group, 2013-04-23) Hennigan, Robert F. ; Moon, C. A. ; Parysek, L. M. ; Monk, K. R. ; Morfini, Gerardo A. ; Berth, Sarah ; Brady, Scott T. ; Ratner, Nancy
    Neurofibromatosis type 2 patients develop schwannomas, meningiomas and ependymomas resulting from mutations in the tumor suppressor gene, NF2, encoding a membrane-cytoskeleton adapter protein called merlin. Merlin regulates contact inhibition of growth and controls the availability of growth factor receptors at the cell surface. We tested if microtubule-based vesicular trafficking might be a mechanism by which merlin acts. We found that schwannoma cells, containing merlin mutations and constitutive activation of the Rho/Rac family of GTPases, had decreased intracellular vesicular trafficking relative to normal human Schwann cells. In Nf2−/− mouse Schwann (SC4) cells, re-expression of merlin as well as inhibition of Rac or its effector kinases, MLK and p38SAPK, each increased the velocity of Rab6 positive exocytic vesicles. Conversely, an activated Rac mutant decreased Rab6 vesicle velocity. Vesicle motility assays in isolated squid axoplasm further demonstrated that both mutant merlin and active Rac specifically reduce anterograde microtubule-based transport of vesicles dependent upon the activity of p38SAPK kinase. Taken together, our data suggest loss of merlin results in the Rac-dependent decrease of anterograde trafficking of exocytic vesicles, representing a possible mechanism controlling the concentration of growth factor receptors at the cell surface.
  • Preprint
    Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases
    ( 2017-04) Brady, Scott T. ; Morfini, Gerardo A.
    Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a “dying back” pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.
  • Article
    Prion protein inhibits fast axonal transport through a mechanism involving casein kinase 2
    (Public Library of Science, 2017-12-20) Zamponi, Emiliano ; Buratti, Fiamma ; Cataldi, Gabriel ; Caicedo, Hector Hugo ; Song, Yuyu ; Jungbauer, Lisa M. ; LaDu, Mary J. ; Bisbal, Mariano ; Lorenzo, Lorenzo ; Ma, Jiyan ; Helguera, Pablo R. ; Morfini, Gerardo A. ; Brady, Scott T. ; Pigino, Gustavo F.
    Prion diseases include a number of progressive neuropathies involving conformational changes in cellular prion protein (PrPc) that may be fatal sporadic, familial or infectious. Pathological evidence indicated that neurons affected in prion diseases follow a dying-back pattern of degeneration. However, specific cellular processes affected by PrPc that explain such a pattern have not yet been identified. Results from cell biological and pharmacological experiments in isolated squid axoplasm and primary cultured neurons reveal inhibition of fast axonal transport (FAT) as a novel toxic effect elicited by PrPc. Pharmacological, biochemical and cell biological experiments further indicate this toxic effect involves casein kinase 2 (CK2) activation, providing a molecular basis for the toxic effect of PrPc on FAT. CK2 was found to phosphorylate and inhibit light chain subunits of the major motor protein conventional kinesin. Collectively, these findings suggest CK2 as a novel therapeutic target to prevent the gradual loss of neuronal connectivity that characterizes prion diseases.
  • Article
    Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases
    (Society for Neuroscience, 2011-07-06) Kanaan, Nicholas M. ; Morfini, Gerardo A. ; LaPointe, Nichole E. ; Pigino, Gustavo F. ; Patterson, Kristina R. ; Song, Yuyu ; Andreadis, Athena ; Fu, Yifan ; Brady, Scott T. ; Binder, Lester I.
    Aggregated filamentous forms of hyperphosphorylated tau (a microtubule-associated protein) represent pathological hallmarks of Alzheimer's disease (AD) and other tauopathies. While axonal transport dysfunction is thought to represent a primary pathogenic factor in AD and other neurodegenerative diseases, the direct molecular link between pathogenic forms of tau and deficits in axonal transport remain unclear. Recently, we demonstrated that filamentous, but not soluble, forms of wild-type tau inhibit anterograde, kinesin-based fast axonal transport (FAT) by activating axonal protein phosphatase 1 (PP1) and glycogen synthase kinase 3 (GSK3), independent of microtubule binding. Here, we demonstrate that amino acids 2–18 of tau, comprising a phosphatase-activating domain (PAD), are necessary and sufficient for activation of this pathway in axoplasms isolated from squid giant axons. Various pathogenic forms of tau displaying increased exposure of PAD inhibited anterograde FAT in squid axoplasm. Importantly, immunohistochemical studies using a novel PAD-specific monoclonal antibody in human postmortem tissue indicated that increased PAD exposure represents an early pathogenic event in AD that closely associates in time with AT8 immunoreactivity, an early marker of pathological tau. We propose a model of pathogenesis in which disease-associated changes in tau conformation lead to increased exposure of PAD, activation of PP1-GSK3, and inhibition of FAT. Results from these studies reveal a novel role for tau in modulating axonal phosphotransferases and provide a molecular basis for a toxic gain-of-function associated with pathogenic forms of tau.
  • Article
    ALS-linked FUS exerts a gain of toxic function involving aberrant p38 MAPK activation
    (Nature Publishing Group, 2017-03-08) Sama, Reddy Ranjith K. ; Fallini, Claudia ; Gatto, Rodolfo ; McKeon, Jeanne E. ; Song, Yuyu ; Rotunno, Melissa S. ; Penaranda, Saul ; Abdurakhmanov, Izrail ; Landers, John E. ; Morfini, Gerardo A. ; Brady, Scott T. ; Bosco, Daryl A.
    Mutations in Fused in Sarcoma/Translocated in Liposarcoma (FUS) cause familial forms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by progressive axonal degeneration mainly affecting motor neurons. Evidence from transgenic mouse models suggests mutant forms of FUS exert an unknown gain-of-toxic function in motor neurons, but mechanisms underlying this effect remain unknown. Towards this end, we studied the effect of wild type FUS (FUS WT) and three ALS-linked variants (G230C, R521G and R495X) on fast axonal transport (FAT), a cellular process critical for appropriate maintenance of axonal connectivity. All ALS-FUS variants impaired anterograde and retrograde FAT in squid axoplasm, whereas FUS WT had no effect. Misfolding of mutant FUS is implicated in this process, as the molecular chaperone Hsp110 mitigated these toxic effects. Interestingly, mutant FUS-induced impairment of FAT in squid axoplasm and of axonal outgrowth in mammalian primary motor neurons involved aberrant activation of the p38 MAPK pathway, as also reported for ALS-linked forms of Cu, Zn superoxide dismutase (SOD1). Accordingly, increased levels of active p38 MAPK were detected in post-mortem human ALS-FUS brain tissues. These data provide evidence for a novel gain-of-toxic function for ALS-linked FUS involving p38 MAPK activation.
  • Preprint
    Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin
    ( 2009-04-28) Morfini, Gerardo A. ; You, Yi-Mei ; Pollema, Sarah L. ; Kaminska, Agnieszka ; Liu, Katherine ; Yoshioka, Katsuji ; Bjorkblom, Benny ; Coffey, Eleanor T. ; Bagnato, Carolina ; Han, David ; Huang, Chun-Fang ; Banker, Gary ; Pigino, Gustavo F. ; Brady, Scott T.
    Selected vulnerability of neurons in Huntington’s disease (HD) suggests alterations in a cellular process particularly critical for neuronal function. Supporting this idea, pathogenic Htt (polyQ-Htt) inhibits fast axonal transport (FAT) in various cellular and animal HD models (mouse and squid), but the molecular basis of this effect remains unknown. Here we show that polyQ-Htt inhibits FAT through a mechanism involving activation of axonal JNK. Accordingly, increased activation of JNK was observed in vivo in cellular and animal HD models. Additional experiments indicate that polyQ-Htt effects on FAT are mediated by the neuron-specific JNK3, and not ubiquitously expressed JNK1, providing a molecular basis for neuron-specific pathology in HD. Mass spectrometry identified a residue in the kinesin-1 motor domain phosphorylated by JNK3, and this modification reduces kinesin-1 binding to microtubules. These data identify JNK3 as a critical mediator of polyQ-Htt toxicity and provides a molecular basis for polyQ-Htt-induced inhibition of FAT.
  • Article
    HIV glycoprotein Gp120 impairs fast axonal transport by activating Tak1 signaling pathways
    (Sage, 2016-11-01) Berth, Sarah ; Mesnard-Hoaglin, Nichole ; Wang, Bin ; Kim, Hajwa ; Song, Yuyu ; Sapar, Maria ; Morfini, Gerardo A. ; Brady, Scott T.
    Sensory neuropathies are the most common neurological complication of HIV. Of these, distal sensory polyneuropathy (DSP) is directly caused by HIV infection and characterized by length-dependent axonal degeneration of dorsal root ganglion (DRG) neurons. Mechanisms for axonal degeneration in DSP remain unclear, but recent experiments revealed that the HIV glycoprotein gp120 is internalized and localized within axons of DRG neurons. Based on these findings, we investigated whether intra-axonal gp120 might impair fast axonal transport (FAT), a cellular process critical for appropriate maintenance of the axonal compartment. Significantly, we found that gp120 severely impaired both anterograde and retrograde FAT. Providing a mechanistic basis for these effects, pharmacological experiments revealed an involvement of various phosphotransferases in this toxic effect, including members of mitogen-activated protein kinase pathways (Tak-1, p38, and c-Jun N-terminal Kinase (JNK)), inhibitor of kappa-B-kinase 2 (IKK2), and PP1. Biochemical experiments and axonal outgrowth assays in cell lines and primary cultures extended these findings. Impairments in neurite outgrowth in DRG neurons by gp120 were rescued using a Tak-1 inhibitor, implicating a Tak-1 mitogen-activated protein kinase pathway in gp120 neurotoxicity. Taken together, these observations indicate that kinase-based impairments in FAT represent a novel mechanism underlying gp120 neurotoxicity consistent with the dying-back degeneration seen in DSP. Targeting gp120-based impairments in FAT with specific kinase inhibitors might provide a novel therapeutic strategy to prevent axonal degeneration in DSP.
  • Article
    Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase
    (Public Library of Sceince, 2013-06-12) Morfini, Gerardo A. ; Bosco, Daryl A. ; Brown, Hannah ; Gatto, Rodolfo ; Kaminska, Agnieszka ; Song, Yuyu ; Molla, Linda ; Baker, Lisa ; Marangoni, M. Natalia ; Berth, Sarah ; Tavassoli, Ehsan ; Bagnato, Carolina ; Tiwari, Ashutosh ; Hayward, Lawrence J. ; Pigino, Gustavo F. ; Watterson, D. Martin ; Huang, Chun-Fang ; Banker, Gary ; Brown, Robert H. ; Brady, Scott T.
    Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS.
  • Article
    Analysis of isoform-specific tau aggregates suggests a common toxic mechanism involving similar pathological conformations and axonal transport inhibition
    (Elsevier, 2016-07-29) Cox, Kristine ; Combs, Benjamin ; Abdelmesih, Brenda ; Morfini, Gerardo A. ; Brady, Scott T. ; Kanaan, Nicholas M.
    Misfolded tau proteins are characteristic of tauopathies, but the isoform composition of tau inclusions varies by tauopathy. Using aggregates of the longest tau isoform (containing 4 microtubule-binding repeats and 4-repeat tau), we recently described a direct mechanism of toxicity that involves exposure of the N-terminal phosphatase-activating domain (PAD) in tau, which triggers a signaling pathway that disrupts axonal transport. However, the impact of aggregation on PAD exposure for other tau isoforms was unexplored. Here, results from immunochemical assays indicate that aggregation-induced increases in PAD exposure and oligomerization are common features among all tau isoforms. The extent of PAD exposure and oligomerization was larger for tau aggregates composed of 4-repeat isoforms compared with those made of 3-repeat isoforms. Most important, aggregates of all isoforms exhibited enough PAD exposure to significantly impair axonal transport in the squid axoplasm. We also show that PAD exposure and oligomerization represent common pathological characteristics in multiple tauopathies. Collectively, these results suggest a mechanism of toxicity common to each tau isoform that likely contributes to degeneration in different tauopathies.
  • Article
    Identifying mRNAs residing in myelinating oligodendrocyte processes as a basis for understanding internode autonomy
    (MDPI, 2023-04-04) Gould, Robert ; Brady, Scott
    In elaborating and maintaining myelin sheaths on multiple axons/segments, oligodendrocytes distribute translation of some proteins, including myelin basic protein (MBP), to sites of myelin sheath assembly, or MSAS. As mRNAs located at these sites are selectively trapped in myelin vesicles during tissue homogenization, we performed a screen to identify some of these mRNAs. To confirm locations, we used real-time quantitative polymerase chain reaction (RT-qPCR), to measure mRNA levels in myelin (M) and ‘non-myelin’ pellet (P) fractions, and found that five (LPAR1, TRP53INP2, TRAK2, TPPP, and SH3GL3) of thirteen mRNAs were highly enriched in myelin (M/P), suggesting residences in MSAS. Because expression by other cell-types will increase p-values, some MSAS mRNAs might be missed. To identify non-oligodendrocyte expression, we turned to several on-line resources. Although neurons express TRP53INP2, TRAK2 and TPPP mRNAs, these expressions did not invalidate recognitions as MSAS mRNAs. However, neuronal expression likely prevented recognition of KIF1A and MAPK8IP1 mRNAs as MSAS residents and ependymal cell expression likely prevented APOD mRNA assignment to MSAS. Complementary in situ hybridization (ISH) is recommended to confirm residences of mRNAs in MSAS. As both proteins and lipids are synthesized in MSAS, understanding myelination should not only include efforts to identify proteins synthesized in MSAS, but also the lipids.
  • Article
    Axon-autonomous effects of the amyloid precursor protein intracellular domain (AICD) on kinase signaling and fast axonal transport
    (MDPI, 2023-10-04) Konig, Svenja ; Schmidt, Nadine ; Bechberger, Karin ; Morris, Sarah ; Priego, Mercedes ; Zaky, Hannah ; Song, Yuyu ; Pielage, Jan ; Brunholz, Silke ; Brady, Scott T. ; Kins, Stefan ; Morfini, Gerardo A.
    The amyloid precursor protein (APP) is a key molecular component of Alzheimer’s disease (AD) pathogenesis. Proteolytic APP processing generates various cleavage products, including extracellular amyloid beta (Aβ) and the cytoplasmic APP intracellular domain (AICD). Although the role of AICD in the activation of kinase signaling pathways is well established in the context of full-length APP, little is known about intracellular effects of the AICD fragment, particularly within discrete neuronal compartments. Deficits in fast axonal transport (FAT) and axonopathy documented in AD-affected neurons prompted us to evaluate potential axon-autonomous effects of the AICD fragment for the first time. Vesicle motility assays using the isolated squid axoplasm preparation revealed inhibition of FAT by AICD. Biochemical experiments linked this effect to aberrant activation of selected axonal kinases and heightened phosphorylation of the anterograde motor protein conventional kinesin, consistent with precedents showing phosphorylation-dependent regulation of motors proteins powering FAT. Pharmacological inhibitors of these kinases alleviated the AICD inhibitory effect on FAT. Deletion experiments indicated this effect requires a sequence encompassing the NPTY motif in AICD and interacting axonal proteins containing a phosphotyrosine-binding domain. Collectively, these results provide a proof of principle for axon-specific effects of AICD, further suggesting a potential mechanistic framework linking alterations in APP processing, FAT deficits, and axonal pathology in AD.