Shen Wen

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 3 of 3
  • Article
    Destructive changes in the neuronal structure of the FVB/N mouse retina
    (Public Library of Science, 2015-06-19) Yang, Jinnan ; Nan, ChangLong ; Ripps, Harris ; Shen, Wen
    We applied a series of selective antibodies for labeling the various cell types in the mammalian retina. These were used to identify the progressive loss of neurons in the FVB/N mouse, a model of early onset retinal degeneration produced by a mutation in the pde6b gene. The immunocytochemical studies, together with electroretinogram (ERG) recordings, enabled us to examine the time course of the degenerative changes that extended from the photoreceptors to the ganglion cells at the proximal end of the retina. Our study indicates that photoreceptors in FVB/N undergo a rapid degeneration within three postnatal weeks, and that there is a concomitant loss of retinal neurons in the inner nuclear layer. Although the loss of rods was detected at an earlier age during which time M- and S-opsin molecules were translocated to the cone nuclei; by 6 months all cones had also degenerated. Neuronal remodeling was also seen in the second-order neurons with horizontal cells sprouting processes proximally and dendritic retraction in rod-driven bipolar cells. Interestingly, the morphology of cone-driven bipolar cells were affected less by the disease process. The cellular structure of inner retinal neurons, i.e., ChAT amacrine cells, ganglion cells, and melanopsin-positive ganglion cells did not exhibit any gross changes of cell densities and appeared to be relatively unaffected by the massive photoreceptor degeneration in the distal retina. However, Muller cell processes began to express GFAP at their endfeet at p14, and it climbed progressively to the cell’s distal ends by 6 months. Our study indicates that FVB/N mouse provides a useful model with which to assess possible intervention strategies to arrest photoreceptor death in related diseases.
  • Article
    Review : Taurine : a “very essential” amino acid
    (Emory Eye Center, Zhongshan Ophthalmic Center, Georgia Knights Templar Educational Foundation, and Emory University, 2012-11-12) Ripps, Harris ; Shen, Wen
    Taurine is an organic osmolyte involved in cell volume regulation, and provides a substrate for the formation of bile salts. It plays a role in the modulation of intracellular free calcium concentration, and although it is one of the few amino acids not incorporated into proteins, taurine is one of the most abundant amino acids in the brain, retina, muscle tissue, and organs throughout the body. Taurine serves a wide variety of functions in the central nervous system, from development to cytoprotection, and taurine deficiency is associated with cardiomyopathy, renal dysfunction, developmental abnormalities, and severe damage to retinal neurons. All ocular tissues contain taurine, and quantitative analysis of ocular tissue extracts of the rat eye revealed that taurine was the most abundant amino acid in the retina, vitreous, lens, cornea, iris, and ciliary body. In the retina, taurine is critical for photoreceptor development and acts as a cytoprotectant against stress-related neuronal damage and other pathological conditions. Despite its many functional properties, however, the cellular and biochemical mechanisms mediating the actions of taurine are not fully known. Nevertheless, considering its broad distribution, its many cytoprotective attributes, and its functional significance in cell development, nutrition, and survival, taurine is undoubtedly one of the most essential substances in the body. Interestingly, taurine satisfies many of the criteria considered essential for inclusion in the inventory of neurotransmitters, but evidence of a taurine-specific receptor has yet to be identified in the vertebrate nervous system. In this report, we present a broad overview of the functional properties of taurine, some of the consequences of taurine deficiency, and the results of studies in animal models suggesting that taurine may play a therapeutic role in the management of epilepsy and diabetes.
  • Preprint
    Glycinergic feedback enhances synaptic gain in the distal retina
    ( 2013-09) Jiang, Zheng ; Yang, Jinnan ; Purpura, Lauren A. ; Liu, Yufei ; Ripps, Harris ; Shen, Wen
    Glycine input originates with interplexiform cells, a group of neurons situated within the inner retina that transmit signals centrifugally to the distal retina. The effect on visual function of this novel mechanism is largely unknown. Using gramicidin-perforated patch whole-cell recordings, intracellular recordings, and specific antibody labeling techniques, we examined the effects of the synaptic connections between glycinergic interplexiform cells, photoreceptors, and bipolar cells. To confirm that interplexiform cells make centrifugal feedback on bipolar cell dendrites, we recorded the post-synaptic glycine currents from axon-detached bipolar cells while stimulating pre-synaptic interplexiform cells. The results show that glycinergic interplexiform cells activate bipolar cell dendrites that express the α3 subunit of the glycine receptor, as well as a subclass of unidentified receptors on photoreceptors. By virtue of their synaptic contacts, glycine centrifugal feedback increases glutamate release from photoreceptors, and suppresses the uptake of glutamate by the EAAT2 transporter on photoreceptors. The net effect is a significant increase in the synaptic gain between photoreceptors and their second-order neurons.