Minobe
Shoshiro
Minobe
Shoshiro
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
ArticleDecadal variability of the upper ocean heat content in the East/Japan Sea and its possible relationship to northwestern Pacific variability(American Geophysical Union, 2012-02-09) Na, Hanna ; Kim, Kwang-Yul ; Chang, Kyung-Il ; Park, Jong Jin ; Kim, Kuh ; Minobe, ShoshiroThe upper ocean heat content variability in the East/Japan Sea was investigated using a 40 year temperature and salinity data set from 1968 to 2007. Decadal variability was identified as the dominant mode of variability in the upper ocean (0–300 m) aside from the seasonal cycle. The decadal variability is strong to the west of northern Honshu, west of the Tsugaru Strait, and west of southern Hokkaido. Temperature anomalies at 50–125 m exhibit a large contribution to the decadal variability, particularly in the eastern part of the East/Japan Sea. The vertical structure of regressed temperature anomalies and the spatial patterns of regressed 10°C isotherms in the East/Japan Sea suggest that the decadal variability is related to upper ocean circulation in the East/Japan Sea. The decadal variability also exhibits an increasing trend, which indicates that the regions showing large decadal variations experienced warming on decadal time scales. Further analysis shows that the decadal variability in the East/Japan Sea is not locally isolated but is related to variability in the northwestern Pacific.
-
ArticleOcean climate observing requirements in support of climate research and climate information(Frontiers Media, 2019-07-31) Stammer, Detlef ; Bracco, Annalisa ; AchutaRao, Krishna ; Beal, Lisa M. ; Bindoff, Nathaniel L. ; Braconnot, Pascale ; Cai, Wenju ; Chen, Dake ; Collins, Matthew ; Danabasoglu, Gokhan ; Dewitte, Boris ; Farneti, Riccardo ; Fox-Kemper, Baylor ; Fyfe, John ; Griffies, Stephen M. ; Jayne, Steven R. ; Lazar, Alban ; Lengaigne, Matthieu ; Lin, Xiaopei ; Marsland, Simon ; Minobe, Shoshiro ; Monteiro, Pedro M. S. ; Robinson, Walter ; Roxy, Mathew Koll ; Rykaczewski, Ryan R. ; Speich, Sabrina ; Smith, Inga J. ; Solomon, Amy ; Storto, Andrea ; Takahashi, Ken ; Toniazzo, Thomas ; Vialard, JérômeNatural variability and change of the Earth’s climate have significant global societal impacts. With its large heat and carbon capacity and relatively slow dynamics, the ocean plays an integral role in climate, and provides an important source of predictability at seasonal and longer timescales. In addition, the ocean provides the slowly evolving lower boundary to the atmosphere, driving, and modifying atmospheric weather. Understanding and monitoring ocean climate variability and change, to constrain and initialize models as well as identify model biases for improved climate hindcasting and prediction, requires a scale-sensitive, and long-term observing system. A climate observing system has requirements that significantly differ from, and sometimes are orthogonal to, those of other applications. In general terms, they can be summarized by the simultaneous need for both large spatial and long temporal coverage, and by the accuracy and stability required for detecting the local climate signals. This paper reviews the requirements of a climate observing system in terms of space and time scales, and revisits the question of which parameters such a system should encompass to meet future strategic goals of the World Climate Research Program (WCRP), with emphasis on ocean and sea-ice covered areas. It considers global as well as regional aspects that should be accounted for in designing observing systems in individual basins. Furthermore, the paper discusses which data-driven products are required to meet WCRP research and modeling needs, and ways to obtain them through data synthesis and assimilation approaches. Finally, it addresses the need for scientific capacity building and international collaboration in support of the collection of high-quality measurements over the large spatial scales and long time-scales required for climate research, bridging the scientific rational to the required resources for implementation.
-
ArticleTowards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level(Frontiers Media, 2019-07-25) Ponte, Rui M. ; Carson, Mark ; Cirano, Mauro ; Domingues, Catia M. ; Jevrejeva, Svetlana ; Marcos, Marta ; Mitchum, Gary ; van de Wal, Roderik S.W. ; Woodworth, Philip L. ; Ablain, Michaël ; Ardhuin, Fabrice ; Ballu, Valerie ; Becker, Mélanie ; Benveniste, Jérôme ; Birol, Florence ; Bradshaw, Elizabeth ; Cazenave, Anny ; De Mey-Frémaux, Pierre ; Durand, Fabien ; Ezer, Tal ; Fu, Lee-Lueng ; Fukumori, Ichiro ; Gordon, Kathy ; Gravelle, Médéric ; Griffies, Stephen M. ; Han, Weiqing ; Hibbert, Angela ; Hughes, Chris W. ; Idier, Deborah ; Kourafalou, Vassiliki H. ; Little, Christopher M. ; Matthews, Andrew ; Melet, Angelique ; Merrifield, Mark ; Meyssignac, Benoit ; Minobe, Shoshiro ; Penduff, Thierry ; Picot, Nicolas ; Piecuch, Christopher G. ; Ray, Richard D. ; Rickards, Lesley ; Santamaría-Gómez, Alvaro ; Stammer, Detlef ; Staneva, Joanna ; Testut, Laurent ; Thompson, Keith ; Thompson, Philip ; Vignudelli, Stefano ; Williams, Joanne ; Williams, Simon D. P. ; Wöppelmann, Guy ; Zanna, Laure ; Zhang, XuebinA major challenge for managing impacts and implementing effective mitigation measures and adaptation strategies for coastal zones affected by future sea level (SL) rise is our limited capacity to predict SL change at the coast on relevant spatial and temporal scales. Predicting coastal SL requires the ability to monitor and simulate a multitude of physical processes affecting SL, from local effects of wind waves and river runoff to remote influences of the large-scale ocean circulation on the coast. Here we assess our current understanding of the causes of coastal SL variability on monthly to multi-decadal timescales, including geodetic, oceanographic and atmospheric aspects of the problem, and review available observing systems informing on coastal SL. We also review the ability of existing models and data assimilation systems to estimate coastal SL variations and of atmosphere-ocean global coupled models and related regional downscaling efforts to project future SL changes. We discuss (1) observational gaps and uncertainties, and priorities for the development of an optimal and integrated coastal SL observing system, (2) strategies for advancing model capabilities in forecasting short-term processes and projecting long-term changes affecting coastal SL, and (3) possible future developments of sea level services enabling better connection of scientists and user communities and facilitating assessment and decision making for adaptation to future coastal SL change.
-
ArticleOcean mesoscale and frontal-scale ocean–atmosphere interactions and influence on large-scale climate: a review(American Meteorological Society, 2023-03-01) Seo, Hyodae ; O’Neill, Larry W. ; Bourassa, Mark A. ; Czaja, Arnaud ; Drushka, Kyla ; Edson, James B. ; Fox-Kemper, Baylor ; Frenger, Ivy ; Gille, Sarah T. ; Kirtman, Benjamin P. ; Minobe, Shoshiro ; Pendergrass, Angeline G. ; Renault, Lionel ; Roberts, Malcolm J. ; Schneider, Niklas ; Small, R. Justin ; Stoffelen, Ad ; Wang, QingAbstract Two decades of high-resolution satellite observations and climate modeling studies have indicated strong ocean–atmosphere coupled feedback mediated by ocean mesoscale processes, including semipermanent and meandrous SST fronts, mesoscale eddies, and filaments. The air–sea exchanges in latent heat, sensible heat, momentum, and carbon dioxide associated with this so-called mesoscale air–sea interaction are robust near the major western boundary currents, Southern Ocean fronts, and equatorial and coastal upwelling zones, but they are also ubiquitous over the global oceans wherever ocean mesoscale processes are active. Current theories, informed by rapidly advancing observational and modeling capabilities, have established the importance of mesoscale and frontal-scale air–sea interaction processes for understanding large-scale ocean circulation, biogeochemistry, and weather and climate variability. However, numerous challenges remain to accurately diagnose, observe, and simulate mesoscale air–sea interaction to quantify its impacts on large-scale processes. This article provides a comprehensive review of key aspects pertinent to mesoscale air–sea interaction, synthesizes current understanding with remaining gaps and uncertainties, and provides recommendations on theoretical, observational, and modeling strategies for future air–sea interaction research. Significance Statement Recent high-resolution satellite observations and climate models have shown a significant impact of coupled ocean–atmosphere interactions mediated by small-scale (mesoscale) ocean processes, including ocean eddies and fronts, on Earth’s climate. Ocean mesoscale-induced spatial temperature and current variability modulate the air–sea exchanges in heat, momentum, and mass (e.g., gases such as water vapor and carbon dioxide), altering coupled boundary layer processes. Studies suggest that skillful simulations and predictions of ocean circulation, biogeochemistry, and weather events and climate variability depend on accurate representation of the eddy-mediated air–sea interaction. However, numerous challenges remain in accurately diagnosing, observing, and simulating mesoscale air–sea interaction to quantify its large-scale impacts. This article synthesizes the latest understanding of mesoscale air–sea interaction, identifies remaining gaps and uncertainties, and provides recommendations on strategies for future ocean–weather–climate research.