Perron J. Taylor

No Thumbnail Available
Last Name
Perron
First Name
J. Taylor
ORCID
0000-0002-0404-8701

Search Results

Now showing 1 - 7 of 7
  • Article
  • Article
    Seismic evidence of glacial-age river incision into the Tahaa barrier reef, French Polynesia
    (Elsevier, 2016-04-13) Toomey, Michael R. ; Woodruff, Jonathan D. ; Donnelly, Jeffrey P. ; Ashton, Andrew D. ; Perron, J. Taylor
    Rivers have long been recognized for their ability to shape reef-bound volcanic islands. On the time-scale of glacial–interglacial sea-level cycles, fluvial incision of exposed barrier reef lagoons may compete with constructional coral growth to shape the coastal geomorphology of ocean islands. However, overprinting of Pleistocene landscapes by Holocene erosion or sedimentation has largely obscured the role lowstand river incision may have played in developing the deep lagoons typical of modern barrier reefs. Here we use high-resolution seismic imagery and core stratigraphy to examine how erosion and/or deposition by upland drainage networks has shaped coastal morphology on Tahaa, a barrier reef-bound island located along the Society Islands hotspot chain in French Polynesia. At Tahaa, we find that many channels, incised into the lagoon floor during Pleistocene sea-level lowstands, are located near the mouths of upstream terrestrial drainages. Steeper antecedent topography appears to have enhanced lowstand fluvial erosion along Tahaa's southwestern coast and maintained a deep pass. During highstands, upland drainages appear to contribute little sediment to refilling accommodation space in the lagoon. Rather, the flushing of fine carbonate sediment out of incised fluvial channels by storms and currents appears to have limited lagoonal infilling and further reinforced development of deep barrier reef lagoons during periods of highstand submersion.
  • Article
    Late Cenozoic sea level and the rise of modern rimmed atolls
    (Elsevier, 2016-03-23) Toomey, Michael R. ; Ashton, Andrew D. ; Raymo, Maureen E. ; Perron, J. Taylor
    Sea-level records from atolls, potentially spanning the Cenozoic, have been largely overlooked, in part because the processes that control atoll form (reef accretion, carbonate dissolution, sediment transport, vertical motion) are complex and, for many islands, unconstrained on million-year timescales. Here we combine existing observations of atoll morphology and corelog stratigraphy from Enewetak Atoll with a numerical model to (1) constrain the relative rates of subsidence, dissolution and sedimentation that have shaped modern Pacific atolls and (2) construct a record of sea level over the past 8.5 million years. Both the stratigraphy from Enewetak Atoll (constrained by a subsidence rate of ~ 20 m/Myr) and our numerical modeling results suggest that low sea levels (50–125 m below present), and presumably bi-polar glaciations, occurred throughout much of the late Miocene, preceding the warmer climate of the Pliocene, when sea level was higher than present. Carbonate dissolution through the subsequent sea-level fall that accompanied the onset of large glacial cycles in the late Pliocene, along with rapid highstand constructional reef growth, likely drove development of the rimmed atoll morphology we see today.
  • Article
    Wavelength selection and symmetry breaking in orbital wave ripples
    (John Wiley & Sons, 2014-10-20) Nienhuis, Jaap H. ; Perron, J. Taylor ; Kao, Justin C. T. ; Myrow, Paul M.
    Sand ripples formed by waves have a uniform wavelength while at equilibrium and develop defects while adjusting to changes in the flow. These patterns arise from the interaction of the flow with the bed topography, but the specific mechanisms have not been fully explained. We use numerical flow models and laboratory wave tank experiments to explore the origins of these patterns. The wavelength of “orbital” wave ripples (λ) is directly proportional to the oscillating flow's orbital diameter (d), with many experimental and field studies finding λ/d ≈ 0.65. We demonstrate a coupling that selects this ratio: the maximum length of the flow separation zone downstream of a ripple crest equals λ when λ/d ≈ 0.65. We show that this condition maximizes the growth rate of ripples. Ripples adjusting to changed flow conditions develop defects that break the bed's symmetry. When d is shortened sufficiently, two new incipient crests appear in every trough, but only one grows into a full-sized crest. Experiments have shown that the same side (right or left) wins in every trough. We find that this occurs because incipient secondary crests slow the flow and encourage the growth of crests on the next flank. Experiments have also shown that when d is lengthened, ripple crests become increasingly sinuous and eventually break up. We find that this occurs because crests migrate preferentially toward the nearest adjacent crest, amplifying any initial sinuosity. Our results reveal the mechanisms that form common wave ripple patterns and highlight interactions among unsteady flows, sediment transport, and bed topography.
  • Article
    Reconstructing river flows remotely on Earth, Titan, and Mars
    (National Academy of Sciences, 2023-07-10) Birch, Samuel P. D. ; Parker, Gary ; Corlies, Paul ; Soderblom, Jason M. ; Miller, Julia W. ; Palermo, Rose V. ; Lora, Juan M. ; Ashton, Andrew D. ; Hayes, Alexander G. ; Perron, J. Taylor
    Alluvial rivers are conveyor belts of fluid and sediment that provide a record of upstream climate and erosion on Earth, Titan, and Mars. However, many of Earth’s rivers remain unsurveyed, Titan’s rivers are not well resolved by current spacecraft data, and Mars’ rivers are no longer active, hindering reconstructions of planetary surface conditions. To overcome these problems, we use dimensionless hydraulic geometry relations—scaling laws that relate river channel dimensions to flow and sediment transport rates—to calculate in-channel conditions using only remote sensing measurements of channel width and slope. On Earth, this offers a way to predict flow and sediment flux in rivers that lack field measurements and shows that the distinct dynamics of bedload-dominated, suspended load-dominated, and bedrock rivers give rise to distinct channel characteristics. On Mars, this approach not only predicts grain sizes at Gale Crater and Jezero Crater that overlap with those measured by the Curiosity and Perseverance rovers, it enables reconstructions of past flow conditions that are consistent with proposed long-lived hydrologic activity at both craters. On Titan, our predicted sediment fluxes to the coast of Ontario Lacus could build the lake’s river delta in as little as ~1,000 y, and our scaling relationships suggest that Titan’s rivers may be wider, slope more gently, and transport sediment at lower flows than rivers on Earth or Mars. Our approach provides a template for predicting channel properties remotely for alluvial rivers across Earth, along with interpreting spacecraft observations of rivers on Titan and Mars.
  • Article
    NEWTS1.0: numerical model of coastal erosion by waves and transgressive scarps
    (European Geosciences Union, 2024-04-30) Palermo, Rose V. ; Perron, J. Taylor ; Soderblom, Jason M. ; Birch, Samuel P. D. ; Hayes, Alexander G. ; Ashton, Andrew D.
    Models of rocky-coast erosion help us understand the physical phenomena that control coastal morphology and evolution, infer the processes shaping coasts in remote environments, and evaluate risk from natural hazards and future climate change. Existing models, however, are highly complex, are computationally expensive, and depend on many input parameters; this limits our ability to explore planform erosion of rocky coasts over long timescales (thousands to millions of years) and over a range of conditions. In this paper, we present a simplified cellular model of coastline evolution in closed basins through uniform erosion and wave-driven erosion. Uniform erosion is modeled as a constant rate of retreat. Wave erosion is modeled as a function of fetch, the distance over which the wind blows to generate waves, and the angle between the incident wave and the shoreline. This reduced-complexity model can be used to evaluate how a detachment-limited coastal landscape reflects climate, sea-level history, material properties, and the relative influence of different erosional processes.
  • Article
    Signatures of wave erosion in Titan’s coasts
    (American Association for the Advancement of Science, 2024-05-13) Palermo, Rose V. ; Ashton, Andrew D. ; Soderblom, Jason M. ; Birch, Samuel P. D. ; Hayes, Alexander G. ; Perron, J. Taylor
    The shorelines of Titan’s hydrocarbon seas trace flooded erosional landforms such as river valleys; however, it is unclear whether coastal erosion has subsequently altered these shorelines. Spacecraft observations and theoretical models suggest that wind may cause waves to form on Titan’s seas, potentially driving coastal erosion, but the observational evidence of waves is indirect, and the processes affecting shoreline evolution on Titan remain unknown. No widely accepted framework exists for using shoreline morphology to quantitatively discern coastal erosion mechanisms, even on Earth, where the dominant mechanisms are known. We combine landscape evolution models with measurements of shoreline shape on Earth to characterize how different coastal erosion mechanisms affect shoreline morphology. Applying this framework to Titan, we find that the shorelines of Titan’s seas are most consistent with flooded landscapes that subsequently have been eroded by waves, rather than a uniform erosional process or no coastal erosion, particularly if wave growth saturates at fetch lengths of tens of kilometers.