Powell Brian S.

No Thumbnail Available
Last Name
First Name
Brian S.

Search Results

Now showing 1 - 2 of 2
  • Article
    Data assimilative modeling investigation of Gulf Stream Warm Core Ring interaction with continental shelf and slope circulation
    (John Wiley & Sons, 2014-09-12) Chen, Ke ; He, Ruoying ; Powell, Brian S. ; Gawarkiewicz, Glen G. ; Moore, Andrew M. ; Arango, Hernan G.
    A data assimilative ocean circulation model is used to hindcast the interaction between a large Gulf Stream Warm Core Ring (WCR) with the Mid-Atlantic Bight (MAB) shelf and slope circulation. Using the recently developed Incremental Strong constraint 4D Variational (I4D-Var) data assimilation algorithm, the model assimilates mapped satellite sea surface height (SSH), sea surface temperature (SST), in situ temperature, and salinity profiles measured by expendable bathythermograph, Argo floats, shipboard CTD casts, and glider transects. Model validations against independent hydrographic data show 60% and 57% error reductions in temperature and salinity, respectively. The WCR significantly changed MAB continental slope and shelf circulation. The mean cross-shelf transport induced by the WCR is estimated to be 0.28 Sv offshore, balancing the mean along-shelf transport by the shelfbreak jet. Large heat/salt fluxes with peak values of 8900 W m−2/4 × 10−4 kg m−2 s−1 are found when the WCR was impinging upon the shelfbreak. Vorticity analysis reveals the nonlinear advection term, as well as the residual of joint effect of baroclinicity and bottom relief (JEBAR) and advection of potential vorticity (APV) play important roles in controlling the variability of the eddy vorticity.
  • Article
    Flow Encountering Abrupt Topography (FLEAT): a multiscale observational and modeling program to understand how topography affects flows in the western North Pacific
    (Oceanography Society, 2019-12-11) Johnston, T. M. Shaun ; Schönau, Martha ; Paluszkiewicz, Theresa ; MacKinnon, Jennifer A. ; Arbic, Brian K. ; Colin, Patrick L. ; Alford, Matthew H. ; Andres, Magdalena ; Centurioni, Luca R. ; Graber, Hans C. ; Helfrich, Karl R. ; Hormann, Verena ; Lermusiaux, Pierre F. J. ; Musgrave, Ruth C. ; Powell, Brian S. ; Qiu, Bo ; Rudnick, Daniel L. ; Simmons, Harper L. ; St. Laurent, Louis C. ; Terrill, Eric ; Trossman, David S. ; Voet, Gunnar ; Wijesekera, Hemantha W. ; Zeide, Kristin L.
    Using a combination of models and observations, the US Office of Naval Research Flow Encountering Abrupt Topography (FLEAT) initiative examines how island chains and submerged ridges affect open ocean current systems, from the hundreds of kilometer scale of large current features to the millimeter scale of turbulence. FLEAT focuses on the western Pacific, mainly on equatorial currents that encounter steep topography near the island nation of Palau. Wake eddies and lee waves as small as 1 km were observed to form as these currents flowed around or over the steep topography. The direction and vertical structure of the incident flow varied over tidal, inertial, seasonal, and interannual timescales, with implications for downstream flow. Models incorporated tides and had grids with resolutions of hundreds of meters to enable predictions of flow transformations as waters encountered and passed around Palau’s islands. In addition to making scientific advances, FLEAT had a positive impact on the local Palauan community by bringing new technology to explore local waters, expanding the country’s scientific infrastructure, maintaining collaborations with Palauan partners, and conducting outreach activities aimed at elementary and high school students, US embassy personnel, and Palauan government officials.