Taroncher-Oldenburg Gaspar

No Thumbnail Available
Last Name
Taroncher-Oldenburg
First Name
Gaspar
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Identification and characterization of three differentially Expressed genes, encoding S-adenosylhomocysteine hydrolase, methionine aminopeptidase, and a histone-like protein, in the toxic dinoflagellate Alexandrium fundyense
    (American Society for Microbiology, 2000-05) Taroncher-Oldenburg, Gaspar ; Anderson, Donald M.
    Genes showing differential expression related to the early G1 phase of the cell cycle during synchronized circadian growth of the toxic dinoflagellate Alexandrium fundyense were identified and characterized by differential display (DD). The determination in our previous work that toxin production in Alexandrium is relegated to a narrow time frame in early G1 led to the hypothesis that transcriptionally up- or downregulated genes during this subphase of the cell cycle might be related to toxin biosynthesis. Three genes, encoding S-adenosylhomocysteine hydrolase (Sahh), methionine aminopeptidase (Map), and a histone-like protein (HAf), were isolated. Sahh was downregulated, while Map and HAf were upregulated, during the early G1 phase of the cell cycle. Sahh and Map encoded amino acid sequences with about 90 and 70% similarity to those encoded by several eukaryotic and prokaryotic Sahh and Map genes, respectively. The partial Map sequence also contained three cobalt binding motifs characteristic of all Map genes. HAf encoded an amino acid sequence with 60% similarity to those of two histone-like proteins from the dinoflagellate Crypthecodinium cohnii Biecheler. This study documents the potential of applying DD to the identification of genes that are related to physiological processes or cell cycle events in phytoplankton under conditions where small sample volumes represent an experimental constraint. The identification of an additional 21 genes with various cell cycle-related DD patterns also provides evidence for the importance of pretranslational or transcriptional regulation in dinoflagellates, contrary to previous reports suggesting the possibility that translational mechanisms are the primary means of circadian regulation in this group of organisms.
  • Thesis
    Cell cycle dynamics and the physiology of saxitoxin biosynthesis in Alexandrium fundyense (Dinophyceae)
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1998-03) Taroncher-Oldenburg, Gaspar
    The mechanism of saxitoxin (STX) biosynthesis in marine dinoflagellates of the genus Alexandrium is still unknown. The aim of this thesis was to analyze novel aspects of toxigenesis during the cell cycle in Alexandrium and to apply molecular techniques to gain new insights on the genetics and regulation of STX biosynthesis. Synchronized cultures of A. fundyense were studied to determine the dynamics of toxin production throughout the cell cycle. Toxin production was discontinuous, was induced by light and always occurred during a period of approximately eight to ten hours in early G1. Analysis of the cell cycle dynamics suggests the existence of two transition points: one at the beginning of G1, which is light-dependent and holds the cells in a Go-like period, and a second one at the end of G1, which is size-dependent and arrests the cells in G1. A model of the cell cycle of A. fundyense is proposed in which progression through the cell cycle can be arrested at two different transition points located in G1 and toxin production is induced by light during G1. The effects of temperature and phosphate limitation on the linkage between changes in the duration of the cell cycle stages and toxicity were studied in semi-continuous cultures of A. fundyense. A direct correlation between G1 duration and toxin content was observed, along with a clear uncoupling of toxin accumulation from the Sand G2 phases of the cell cycle. In both experiments, toxin production rates remained constant for the respective range of conditions, implying that the variations in toxin content observed were a result of increasing periods of biosynthetic activity. Phosphate limitation enhanced toxin production rates and affected interconversions among STX derivatives in several ways: oxidations to yield the hydroxy-series of STXs were phosphate-dependent while sulfatation reactions were not. Differential Display (DD) analysis was applied to the identification of genes that were up- or downregulated during toxigenesis in synchronized cultures of A. fundyense. Three genes were isolated: S-adenosy lhomocysteine hydrolase, methionine aminopeptidase and a histone-like protein. None could be directly correlated to toxigenesis but instead relate to general cellular metabolism.