Katz
Timor
Katz
Timor
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleGroundfish overfishing, diatom decline, and the marine silica cycle : lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash(American Geophysical Union, 2009-12-31) Katz, Timor ; Yahel, Gitai ; Yahel, Ruthy ; Tunnicliffe, Verena ; Herut, Barak ; Snelgrove, Paul V. R. ; Crusius, John ; Lazar, BoazIn this study, we link groundfish activity to the marine silica cycle and suggest that the drastic mid-1980s crash of the Baltic Sea cod (Gadus morhua) population triggered a cascade of events leading to decrease in dissolved silica (DSi) and diatom abundance in the water. We suggest that this seemingly unrelated sequence of events was caused by a marked decline in sediment resuspension associated with reduced groundfish activity resulting from the cod crash. In a study in Saanich Inlet, British Columbia, Canada, we discovered that, by resuspending bottom sediments, groundfish triple DSi fluxes from the sediments and reduce silica accumulation therein. Using these findings and the available oceanographic and environmental data from the Baltic Sea, we estimate that overfishing and recruitment failure of Baltic cod reduced by 20% the DSi supply from bottom sediments to the surface water leading to a decline in the diatom population in the Baltic Sea. The major importance of the marginal ocean in the marine silica cycle and the associated high population density of groundfish suggest that groundfish play a major role in the silica cycle. We postulate that dwindling groundfish populations caused by anthropogenic perturbations, e.g., overfishing and bottom water anoxia, may cause shifts in marine phytoplankton communities.
-
ArticleResuspension by fish facilitates the transport and redistribution of coastal sediments(Association for the Sciences of Limnology and Oceanography, 2012-07) Katz, Timor ; Yahel, Gitai ; Reidenbach, Matthew A. ; Tunnicliffe, Verena ; Herut, Barak ; Crusius, John ; Whitney, Frank ; Snelgrove, Paul V. R. ; Lazar, BoazOxygen availability restricts groundfish to the oxygenated, shallow margins of Saanich Inlet, an intermittently anoxic fjord in British Columbia, Canada. New and previously reported 210Pb measurements in sediment cores compared with flux data from sediment traps indicate major focusing of sediments from the oxygenated margins to the anoxic basin seafloor. We present environmental and experimental evidence that groundfish activity in the margins is the major contributor to this focusing. Fine particles resuspended by groundfish are advected offshore by weak bottom currents, eventually settling in the anoxic basin. Transmittance and sediment trap data from the water column show that this transport process maintains an intermediate nepheloid layer (INL) in the center of the Inlet. This INL is located above the redox interface and is unrelated to water density shifts in the water column. We propose that this INL is shaped by the distribution of groundfish (as resuspension sources) along the slope and hence by oxygen availability to these fish. We support this conclusion with a conceptual model of the resuspension and offshore transport of sediment. This fish-induced transport mechanism for sediments is likely to enhance organic matter decomposition in oxygenated sediments and its sequestration in anoxic seafloors.