O’Rourke
Amanda K.
O’Rourke
Amanda K.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleSpectral decomposition of internal gravity wave sea surface height in global models(John Wiley & Sons, 2017-10-10) Savage, Anna C. ; Arbic, Brian K. ; Alford, Matthew H. ; Ansong, Joseph ; Farrar, J. Thomas ; Menemenlis, Dimitris ; O’Rourke, Amanda K. ; Richman, James G. ; Shriver, Jay F. ; Voet, Gunnar ; Wallcraft, Alan J. ; Zamudio, LuisTwo global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0:87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ∼50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.
-
ArticleEffects of grid spacing on high-frequency precipitation variance in coupled high-resolution global ocean–atmosphere models(Springer, 2022-03-29) Light, Charles X. ; Arbic, Brian K. ; Martin, Paige E. ; Brodeau, Laurent ; Farrar, J. Thomas ; Griffies, Stephen M. ; Kirtman, Benjamin ; Laurindo, Lucas ; Menemenlis, Dimitris ; Molod, Andrea ; Nelson, Arin D. ; Nyadjro, Ebenezer ; O’Rourke, Amanda K. ; Shriver, Jay F. ; Siqueira, Leo ; Small, R. Justin ; Strobach, EhudHigh-frequency precipitation variance is calculated in 12 different free-running (non-data-assimilative) coupled high resolution atmosphere–ocean model simulations, an assimilative coupled atmosphere–ocean weather forecast model, and an assimilative reanalysis. The results are compared with results from satellite estimates of precipitation and rain gauge observations. An analysis of irregular sub-daily fluctuations, which was applied by Covey et al. (Geophys Res Lett 45:12514–12522, 2018. https://doi.org/10.1029/2018GL078926) to satellite products and low-resolution climate models, is applied here to rain gauges and higher-resolution models. In contrast to lower-resolution climate simulations, which Covey et al. (2018) found to be lacking with respect to variance in irregular sub-daily fluctuations, the highest-resolution simulations examined here display an irregular sub-daily fluctuation variance that lies closer to that found in satellite products. Most of the simulations used here cannot be analyzed via the Covey et al. (2018) technique, because they do not output precipitation at sub-daily intervals. Thus the remainder of the paper focuses on frequency power spectral density of precipitation and on cumulative distribution functions over time scales (2–100 days) that are still relatively “high-frequency” in the context of climate modeling. Refined atmospheric or oceanic model grid spacing is generally found to increase high-frequency precipitation variance in simulations, approaching the values derived from observations. Mesoscale-eddy-rich ocean simulations significantly increase precipitation variance only when the atmosphere grid spacing is sufficiently fine (< 0.5°). Despite the improvements noted above, all of the simulations examined here suffer from the “drizzle effect”, in which precipitation is not temporally intermittent to the extent found in observations.