Struve Torben

No Thumbnail Available
Last Name
Struve
First Name
Torben
ORCID
0000-0002-6453-5552

Search Results

Now showing 1 - 3 of 3
  • Article
    Neodymium isotopes and concentrations in aragonitic scleractinian cold-water coral skeletons - modern calibration and evaluation of palaeo-applications
    (Elsevier, 2017-01-27) Struve, Torben ; van de Flierdt, Tina ; Burke, Andrea ; Robinson, Laura F. ; Hammond, Samantha J. ; Crocket, Kirsty C. ; Bradtmiller, Louisa I. ; Auro, Maureen E. ; Mohamed, Kais J. ; White, Nicholas J.
    Cold-water corals (CWCs) are unique archives of mid-depth ocean chemistry and have been used successfully to reconstruct the neodymium (Nd) isotopic composition of seawater from a number of species. High and variable Nd concentrations in fossil corals however pose the question as to how Nd is incorporated into their skeletons. We here present new results on modern specimens of Desmophyllum dianthus, Balanophyllia malouinensis, and Flabellum curvatum, collected from the Drake Passage, and Madrepora oculata, collected from the North Atlantic. All modern individuals were either collected alive or uranium-series dated to be < 500 years old for comparison with local surface sediments and seawater profiles. Modern coral Nd isotopic compositions generally agree with ambient seawater values, which in turn are consistent with previously published seawater analyses, supporting small vertical and lateral Nd isotope gradients in modern Drake Passage waters. Two Balanophyllia malouinensis specimens collected live however deviate by up to 0.6 epsilon units from ambient seawater. We therefore recommend that this species should be treated with caution for the reconstruction of past seawater Nd isotopic compositions. Seventy fossil Drake Passage CWCs were furthermore analysed for their Nd concentrations, revealing a large range from 7.3 to 964.5 ng/g. Samples of the species D. dianthus and Caryophyllia spp. show minor covariation of Nd with 232Th content, utilised to monitor contaminant phases in cleaned coral aragonite. Strong covariations between Nd and Th concentrations are however observed in the species B. malouinensis and G. antarctica. In order to better constrain the source and nature of Nd in the cleaned aragonitic skeletons, a subset of sixteen corals was investigated for its rare earth element (REE) content, as well as major and trace element geochemistry. Our new data provide supporting evidence that the applied cleaning protocol efficiently removes contaminant lithogenic and ferromanganese oxyhydroxide phases. Mass balance calculations and seawater-like REE patterns rule out lithogenic and ferromanganese oxyhydroxide phases as a major contributor to elevated Nd concentrations in coral aragonite. Based on mass balance considerations, geochemical evidence, and previously published independent work by solid-state nuclear magnetic resonance (NMR) spectroscopy, we suggest authigenic phosphate phases as a significant carrier of skeletal Nd. Such a carrier phase could explain sporadic appearance of high Nd concentrations in corals and would be coupled with seawater-derived Nd isotopic compositions, lending further confidence to the application of Nd isotopes as a water mass proxy in CWCs.
  • Article
    Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep-sea coral aragonite
    (John Wiley & Sons, 2016-01-09) Struve, Torben ; van de Flierdt, Tina ; Robinson, Laura F. ; Bradtmiller, Louisa I. ; Hines, Sophia K. ; Adkins, Jess F. ; Lambelet, Myriam ; Crocket, Kirsty C. ; Kreissig, Katharina ; Coles, Barry ; Auro, Maureen E.
    Isotopes of the actinide elements protactinium (Pa), thorium (Th), and uranium (U), and the lanthanide element neodymium (Nd) are often used as complementary tracers of modern and past oceanic processes. The extraction of such elements from low abundance matrices, such as seawater and carbonate, is however labor-intensive and requires significant amounts of sample material. We here present a combined method for the extraction of Pa, Th, and Nd from 5 to 10 L seawater samples, and of U, Th, and Nd from <1 g carbonate samples. Neodymium is collected in the respective wash fractions of Pa-Th and U-Th anion exchange chromatographies. Regardless of the original sample matrix, Nd is extracted during a two-stage ion chromatography, followed by thermal ionization mass spectrometry (TIMS) analysis as NdO+. Using this combined procedure, we obtained results for Nd isotopic compositions on two GEOTRACES consensus samples from Bermuda Atlantic Time Series (BATS), which are within error identical to results for separately sampled and processed dedicated Nd samples (εNd = −9.20 ± 0.21 and −13.11 ± 0.21 for 15 and 2000 m water depths, respectively; intercalibration results from 14 laboratories: εNd = −9.19 ± 0.57 and −13.14 ± 0.57). Furthermore, Nd isotope results for an in-house coral reference material are identical within analytical uncertainty for dedicated Nd chemistry and after collection of Nd from U-Th anion exchange chromatography. Our procedure does not require major adaptations to independently used ion exchange chromatographies for U-Pa-Th and Nd, and can hence be readily implemented for a wide range of applications.
  • Article
    A deep Tasman outflow of Pacific waters during the last glacial period
    (Nature Research, 2022-06-30) Struve, Torben ; Wilson, David J. ; Hines, Sophia K. ; Adkins, Jess F. ; van de Flierdt, Tina
    The interoceanic exchange of water masses is modulated by flow through key oceanic choke points in the Drake Passage, the Indonesian Seas, south of Africa, and south of Tasmania. Here, we use the neodymium isotope signature (εNd) of cold-water coral skeletons from intermediate depths (1460‒1689 m) to trace circulation changes south of Tasmania during the last glacial period. The key feature of our dataset is a long-term trend towards radiogenic εNd values of ~−4.6 during the Last Glacial Maximum and Heinrich Stadial 1, which are clearly distinct from contemporaneous Southern Ocean εNd of ~−7. When combined with previously published radiocarbon data from the same corals, our results indicate that a unique radiogenic and young water mass was present during this time. This scenario can be explained by a more vigorous Pacific overturning circulation that supported a deeper outflow of Pacific waters, including North Pacific Intermediate Water, through the Tasman Sea.